Children can transmit severe acute respiratory syndrome coronavirus 2 and, although at a lower risk, can experience serious outcomes from infection. Vaccinating children against coronavirus disease 2019 (COVID-19) is essential to protecting their health and establishing higher population immunity. In 2015–2017, 1 in 6 children aged 3 to 17 years had a developmental disability (DD) such as cerebral palsy, autism spectrum disorder (ASD), or intellectual disability (ID).1 DDs are a diverse group of chronic conditions that begin in childhood and can impact functioning throughout life. Despite limited data in public health surveillance systems, in some evidence, it is suggested that some children with DDs might be disproportionately affected by COVID-19, both by the illness itself and the pandemic’s impact on receipt of services. Children with DDs often have medical conditions that contribute to higher risk for severe illness from COVID-19,2 can experience barriers to accessing needed health care, and can possess other characteristics increasing their risk from COVID-19, including limited mobility, direct care requirements, and challenges practicing preventive measures and communicating illness symptoms.3 We describe the limited available data relevant for children with DDs and highlight other considerations for COVID-19 vaccination.

In a cross-sectional study of >64 million US patients of all ages, COVID-19 incidence was >3 times higher among people with an ID than those without one.4 Among those with COVID-19, twice as many people with an ID were hospitalized, admitted to the ICU, or died, compared with those without an ID. In analyses adjusting for age and comorbidities, ID was the strongest risk factor for COVID-19 diagnosis, and the odds of mortality were almost 6 times higher among patients with COVID-19 who had an ID, compared with those without an ID.

Private insurance claims data from the FAIR Health database revealed similar results among patients of all ages for other DDs.5 Among people with COVID-19, those with ASD, ID, learning disabilities, and attention-
deficit/hyperactivity-disorder had \(\sim 3 \) to 9 times higher likelihood of hospitalization (adjusted for age and sex) than those without these conditions and longer hospitalizations. Those who had a DD had an approximately threefold higher odds of mortality than those without.\(^6\) Data on 43 465 children \(\leq 18 \) years revealed that from March 2020 to January 2021 children with neurodevelopmental disorders were 1.6 times as likely to be hospitalized with COVID-19 than children without neurodevelopmental disorders, although severe illness among children hospitalized for COVID-19 with neurodevelopmental disorders was less common than among children with other conditions.\(^7\) An analysis of 30 282 patients with COVID-19 from the TriNetX COVID-19 Research Network revealed the COVID-19 fatality rate among children \(< 18 \) years with ID and other DDs was 13 times higher than among children without these conditions. However, these rates were based on only 2 fatalities among 125 children with DD and 1 fatality among 791 children without DD.\(^2\)

Limitations of the available data should be considered. It is challenging to compare results across studies because of variability in types, severity, and definitions of DDs, which can lead to heterogeneity in risk. In few studies did researchers examine children specifically, and not all researchers account for underlying medical conditions or other confounders. In many studies, researchers used administrative health care data, which are not generalizable to all patients (eg, includes only commercial insurance) and rely on diagnostic or other billing codes, which might result in misclassification of DDs or of COVID-19 as the reason for health care use (versus incidental finding). Finally, not all analyses have undergone peer review.

Data on influenza vaccination can be used to inform potential challenges to COVID-19 vaccination among children with DDs. Despite many children with DDs being considered high-risk for influenza complications, vaccination rates in this population are consistently low (see Supplemental Table 1). Reasons for these suboptimal vaccination rates might be related to limited knowledge about the increased risk for severe outcomes, access barriers, or vaccine hesitancy.

In an online survey of parents of children with an ID or other neurologic disorder, it was found that their most important source of information regarding vaccines was their child’s health care provider.\(^8\) However, in a companion survey of physicians likely to treat these children, \(< 50\% \) recognized ID as a high-risk condition for influenza.\(^8\)

Data from studies before 2020 reveal that children with ASD have lower rates of influenza and other vaccinations compared with that of children without ASD, and that parents of children with ASD have higher rates of vaccine hesitancy than parents of children with other DDs or no DDs (see Supplemental Table 1).

Although vaccinating siblings of children with DDs might help to reduce COVID-19 transmission within households, data reveal that siblings of children with DDs have lower vaccination rates than their siblings with DDs, and siblings of children with DDs have a lower prevalence of on-time vaccination and a higher prevalence of parent vaccine refusal than siblings of children without DDs (see Supplemental Table 1).

People with DDs face long-standing systemic health and social inequities. Children with DDs have greater health care and community-based service use than children without DDs\(^9\) yet are more likely to have unmet health care needs. Additional challenges were raised by the COVID-19 pandemic. In a survey of \(> 3000 \) caregivers of children with ASD, 62% reported moderate to severe negative impacts of COVID-19–related disruption in services on their child’s ASD symptoms, and 72% reported experiencing moderate to extreme stress due to these disruptions.\(^10\)

School closings to in-person learning and modified remote learning options have kept children within the home more, isolating and essentially resegregating many children with DDs from their peers, despite the Individuals with Disabilities Education Act mandate that children with disabilities be educated with children without disabilities to the maximum extent possible in the least restrictive environment. Prioritizing adolescents with DDs aged \(\geq 12 \) years for COVID-19 vaccination and children aged \(< 12 \) years when vaccines are authorized for use in this age group is essential to resuming needed educational services within the school setting.

Pediatricians can work with other providers to tailor COVID-19 vaccination efforts for children with DDs to overcome issues of access and hesitancy. Children with DDs may have more interactions with health care or other service specialists than with general pediatricians. Collaboration between pediatric hospital systems, pediatric specialists, disability-specific practices and clinics, and occupational, physical, or speech specialists with knowledge of the specific needs of the children with DD in their community will be important for successful vaccination implementation. COVID-19
vaccination can be provided in ways that are easier for children with DDs to accept, such as the option to be vaccinated in their vehicle or quiet areas. Some children with DDs may require more time or sensory modifications during vaccination appointments. In addition, some children with DDs may be unable to wear masks or practice physical distancing, limiting their ability to receive services at many locations. Trusted care providers can work with parents to learn and address specific concerns with vaccination. Collaboration with schools may facilitate parental education and/or leverage school-based clinics.

In conclusion, children with DDs are likely at a higher risk of COVID-19 illness because of increased prevalence of underlying health conditions, suboptimal vaccination rates, and systemic inequities. Strategies can be implemented and supported by pediatricians to ensure that children with DDs, their caregivers, family members, and service providers receive the COVID-19 vaccine to reduce negative outcomes. Highlighting the unique considerations for COVID-19 vaccination for children with DDs can support equitable access of vaccination for children with DDs and their families.

ABBREVIATIONS

ASD: autism spectrum disorder
COVID-19: coronavirus disease 2019
DD: developmental disability
ID: intellectual disability

REFERENCES

Important Considerations for COVID-19 Vaccination of Children With Developmental Disabilities
Sarah C. Tinker, Mary E Cogswell, Georgina Peacock and A. Blythe Ryerson
Pediatrics originally published online July 16, 2021; originally published online July 16, 2021;

Updated Information & Services
including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/early/2021/09/20/peds.2021-053190

References
This article cites 5 articles, 1 of which you can access for free at:
http://pediatrics.aappublications.org/content/early/2021/09/20/peds.2021-053190#BIBL

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Developmental/Behavioral Pediatrics
http://www.aappublications.org/cgi/collection/development:behavioral_issues_sub
Children With Special Health Care Needs
http://www.aappublications.org/cgi/collection/disabilities_sub
Vaccine/Immunization
http://www.aappublications.org/cgi/collection/vaccine:immunization_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.aappublications.org/site/misc Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
http://www.aappublications.org/site/misc/reprints.xhtml
Important Considerations for COVID-19 Vaccination of Children With Developmental Disabilities

Sarah C. Tinker, Mary E Cogswell, Georgina Peacock and A. Blythe Ryerson

Pediatrics originally published online July 16, 2021; originally published online July 16, 2021;

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://pediatrics.aappublications.org/content/early/2021/09/20/peds.2021-053190

Data Supplement at:

http://pediatrics.aappublications.org/content/suppl/2021/09/20/peds.2021-053190.DCSupplemental