Performance of a Rapid SARS-CoV-2 Antigen Detection Assay in Symptomatic Children

Nader Shaikh, MD, MPH,1 Eric J. Friedlander, MD, MPH,1 Patrick J. Tate, MD,1 Hui Liu, MS,1 Chung-Chou Ho Chang, PhD,2 Alan Wells, MD, DMSc,1 Alejandro Hoberman, MD1

Abbott BinaxNOW (a bedside lateral flow immunoassay intended for the qualitative detection of nucleocapsid protein antigen) is widely available under US Food and Drug Administration emergency use authorization for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in symptomatic patients within 7 days of symptom onset. Its diagnostic performance in symptomatic children has not been evaluated.

METHODS

Cross-sectional study of symptomatic children ≤20 years presenting for care to 1 of 2 primary care practices in December 2020, during which time coronavirus disease 2019 (COVID-19) rates were particularly high (1927 cases per 100 000; 26% of all tests performed were positive). The University of Pittsburgh Institutional Review Board approved the study.

Per our institution's guidelines at the time of the study, we tested consecutive children with symptoms for <7 days presenting with 1 of the following: cough, shortness of breath, difficulty breathing, loss of smell or taste, severe respiratory illness; or 2 of the following: known exposure to COVID-19, fever or chills, congestion or runny nose, body aches, fatigue, headache, sore throat, nausea, vomiting, or diarrhea. Assuming 25% of children would test positive for SARS-CoV-2 and that the sensitivity and specificity of BinaxNOW would be close to 85%, we estimated needing 196 children to produce 95% confidence intervals (CIs) no wider than +/−10% around test sensitivity.

A total of 2 nasal (middle turbinate) swabs were obtained from each patient, 1 from each nostril. One was used for in-office BinaxNOW; 1 trained reader visually interpreted test cards (any visible band was considered positive). The second specimen was placed in transport media and submitted for qualitative real-time polymerase chain reaction (PCR) for SARS-CoV-2 RNA by using Roche Cobas or Hologic Panther platforms at a local Clinical Laboratory Improvement Amendments-approved laboratory.

We calculated accuracy of BinaxNOW using PCR results as the reference standard using Stata 16 (Stata Corp, College Station, TX). Because, in previous studies, researchers have suggested relatively higher viral loads in younger children, we explored the effect of age on test accuracy.

RESULTS

A total of 199 children aged 2 months to 20 years were included; 39 had a positive PCR for SARS-CoV-2. The sensitivity and specificity of BinaxNOW were 0.85 (95% confidence interval: 0.70–0.94) and 0.91 (95% CI: 0.86–0.95), respectively (Table 1). The

1Departments of Pediatrics, Biostatistics, and Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and 2Children's Community Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania

Dr Shaikh conceptualized the study, designed the study, analyzed the data, and drafted the initial manuscript; Drs Tate and Friedlander collected data and reviewed and revised the manuscript; Drs Wells and Chang and Ms Liu analyzed the data and reviewed and revised the manuscript; Dr Hoberman conceptualized the study, designed the study, analyzed the data, and reviewed and revised the manuscript; and all authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

DOI: https://doi.org/10.1542/peds.2021-050832

Accepted for publication May 21, 2021

Address correspondence to Nader Shaikh, MD, MPH, University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, 1 Children's Hospital Dr, 4401 Penn Ave, Pittsburgh, PA 15224. E-mail: nader.shaikh@chp.edu

PEDiATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275)

Copyright © 2021 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

FUNDING: No external funding.

POTENTIAL CONFLICT OF INTEREST: The authors have indicated they have no potential conflicts of interest to disclose.

accuracy of the test was higher \(P = .008 \) in children aged <7 years; in this age group, the sensitivity and specificity of the test were 1.00 (95% CI: 0.72–1.00) and 0.92 (95% CI: 0.84–0.97), respectively.

DISCUSSION

We provide data on the accuracy of BinaxNOW for SARS-CoV-2 in symptomatic children. The test does not seem particularly useful in children 7 to 20 years because of its suboptimal combination of sensitivity and specificity. In children <7 years, although specificity of the test was suboptimal, its high sensitivity might be useful in ruling out COVID-19. If our findings are confirmed by others, children <7 years with a negative BinaxNOW result could also have influenced accuracy.

The strengths of our study include determining the test performance in the same setting that it would be used in practice. The limitations include lack of cycle threshold data for the PCR test. In conclusion, with the use of the BinaxNOW rapid antigen test, one must consider potentially high rates of false-positives and the age of the target population before using it as a stand-alone assay.

ABBREVIATIONS

CI: confidence interval
COVID-19: coronavirus disease 2019
PCR: polymerase chain reaction
SARS-CoV-2: severe acute respiratory syndrome coronavirus 2

REFERENCES

TABLE 1 Accuracy of BinaxNOW for SARS-CoV-2 Infection According to Age

<table>
<thead>
<tr>
<th>Age Group</th>
<th>No. Children</th>
<th>No. With SARS-CoV-2</th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
<th>Positive Predictive Value (95% CI)</th>
<th>Negative Predictive Value (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children of all ages</td>
<td>199</td>
<td>39</td>
<td>85 (70–94)</td>
<td>91 (86–95)</td>
<td>70 (55–85)</td>
<td>96 (82–99)</td>
</tr>
<tr>
<td>Children <7 y of age</td>
<td>89</td>
<td>11</td>
<td>100 (72–100)</td>
<td>92 (84–97)</td>
<td>65 (58–86)</td>
<td>100 (85–100)</td>
</tr>
<tr>
<td>Children 7–20 y of age</td>
<td>110</td>
<td>28</td>
<td>79 (58–92)</td>
<td>90 (82–96)</td>
<td>73 (54–88)</td>
<td>93 (84–93)</td>
</tr>
</tbody>
</table>
Performance of a Rapid SARS-CoV-2 Antigen Detection Assay in Symptomatic Children
Nader Shaikh, Eric J. Friedlander, Patrick J. Tate, Hui Liu, Chung-Chou Ho Chang, Alan Wells and Alejandro Hoberman
Pediatrics 2021;148;
DOI: 10.1542/peds.2021-050832 originally published online May 26, 2021;

Updated Information & Services
including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/148/3/e2021050832

References
This article cites 4 articles, 1 of which you can access for free at:
http://pediatrics.aappublications.org/content/148/3/e2021050832#B1BL

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Infectious Disease
http://www.aappublications.org/cgi/collection/infectious_diseases_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.aappublications.org/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
http://www.aappublications.org/site/misc/reprints.xhtml

American Academy of Pediatrics
DEDICATED TO THE HEALTH OF ALL CHILDREN®
Performance of a Rapid SARS-CoV-2 Antigen Detection Assay in Symptomatic Children
Nader Shaikh, Eric J. Friedlander, Patrick J. Tate, Hui Liu, Chung-Chou Ho Chang, Alan Wells and Alejandro Hoberman
Pediatrics 2021;148;
DOI: 10.1542/peds.2021-050832 originally published online May 26, 2021;
The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/148/3/e2021050832