Predicting Autism Spectrum Disorder in Very Preterm Infants

Janet S. Soul, MDCM, Sarah J. Spence, MD, PhD

Children born preterm are known to be at higher risk for developing autism spectrum disorder (ASD) compared with their term-born counterparts, with an estimated 7% prevalence of ASD based on a recent large prospective study and a meta-analysis.1,2 This high prevalence is in contrast to the currently estimated prevalence of ASD in the United States of 1.8% in the general population.3 ASD has been shown to be associated with a variety of prenatal, perinatal, and neonatal risk factors, including a variety of maternal health risk factors and medications and neonatal risk factors such as seizures, birth asphyxia, and low birth weight.4

Previously identified perinatal risk factors for ASD specific to preterm infants include factors such as low birth gestational age and birth weight, intracranial hemorrhage, and acute and chronic lung disease (CLD).5

The article by Chen et al6 in this issue of Pediatrics provides the first prospectively obtained data regarding whether there is an early developmental trajectory of prematurely born children that predicts who will develop ASD. The authors tested 319 preterm children prospectively with Bayley Scales of Infant Development examinations at 6, 12, and 24 months and used group-based trajectory modeling to assess whether early-life developmental trajectory predicted autism at 5 years of age. The approach of looking at developmental trajectory has been used in other high-risk populations, such as infant siblings of children with ASD7 or those with a specific genetic disorder (tuberous sclerosis complex) with a high prevalence of ASD.8

The authors provide the first data revealing that although a small percentage of preterm infants who develop ASD have a similar early-life trajectory to that of term-born children, with decline in mental development from age 12 to 24 months,9,10 the highest-risk group was identified as having low cognitive scores at 6 months, with further decline over time, allowing for early identification and intervention. The converse finding that infants with low cognitive scores who improve to ＞85 and those with stably high cognitive scores are at lower risk of developing ASD enables the clinician to provide reassurance to families.

Their analysis also illuminates risk factors for ASD related to preterm birth by comparing the 29 children who developed ASD with the 290 children without ASD. Notably, their study identified both nonmodifiable (eg, male sex, gestational age, and birth weight) and potentially modifiable risk factors (eg, CLD and duration of oxygen therapy) for the development of ASD. As the authors discussed, CLD is known to be a risk factor for developmental delay and cognitive impairment and/or disability, but it is unclear the extent to which the risk associated with CLD is related to brain injury and altered brain development.

One acknowledged limitation of the study was the lack of neuroimaging data, so it is unknown whether there was a contribution of identifiable brain injury to the development of ASD in their subjects. It is likely that at least

Department of Neurology, Harvard Medical School, Harvard University and Boston Children’s Hospital, Boston, Massachusetts

Opinions expressed in these commentaries are those of the authors and not necessarily those of the American Academy of Pediatrics or its Committees.

DOI: https://doi.org/10.1542/peds.2020-019448

Accepted for publication Jul 15, 2020

Address correspondence to Janet S. Soul, MDCM, Department of Neurology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115. E-mail: janet.soul@childrens.harvard.edu

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).

Copyright © 2020 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

FUNDING: No external funding.

POTENTIAL CONFLICT OF INTEREST: The authors have indicated they have no potential conflicts of interest to disclose.

COMPANION PAPER: A companion to this article can be found online at www.pediatrics.org/cgi/doi/10.1542/peds.2020-0297.

some of the infants in the low
cognitive score group had easily
detected brain injury, such as large
cerebellar injury11 or cerebral injury
and/or impaired brain
development,12-14 both of which are
associated with low IQ and are
suspected to increase the risk of ASD.
Additionally, there were no data
regarding genetic risk factors for ASD,
which could contribute a “second hit”
to risk factors related to prematurity.
Numerous genes have now been
identified to be associated with ASD
and/or intellectual disability and
could have contributed to some cases
of ASD in this study. Male sex remains
a strong risk factor for ASD in both
preterm and term-born children, and
particularly in preterm children, male
sex may contribute to inherent
 genetic risks related to sex as well as
increased vulnerability to
 complications of preterm birth that
also increase the risk of ASD. The
importance of neuroimaging and
 genetic data relates in part to the
observation that preterm and term-
born children with ASD have been
shown to have important phenotypic
differences. In one study, boys with
ASD born preterm had higher rates of
seizures, attention-deficit/
 hyperactivity disorder, and sleep
apnea,15 suggesting a potentially
different neural substrate for ASD
than term-born children.
Perhaps most importantly, these
findings provide an opportunity for
initiating interventions in early life to
mitigate ASD before the diagnosis of
ASD can be definitively established.
Identification of a constellation of
prenatal and neonatal risk factors
could help clinicians target infants at
highest risk, while providing
reassurance to parents whose infants
are at low risk. Identification of high-
risk infants with low cognitive scores
at 6 months of age or those with
declining scores over time could
provide another opportunity to
intensify early intervention services
aimed at mitigating manifestations
and/or symptoms of ASD.
Importantly, identification of high-
risk infants by neonatal discharge
and/or 6 months of age could
improve research into novel therapies
to mitigate the manifestations of ASD,
such as communication and social-
emotional deficits or impairments.

ABBREVIATIONS
ASD: autism spectrum disorder
CLD: chronic lung disease

REFERENCES
1. Hirschberger RG, Kuban KCK, O’Shea
 TM, et al, ELGAN Study Investigators. Co-
ocurrence and severity of neurodevelopmental burden (cognitive
 impairment, cerebral palsy, autism
 spectrum disorder, and epilepsy) at age
ten years in children born extremely
SK. Prevalence of autism spectrum
 disorder in preterm infants: a meta-
analysis. *Pediatrics*. 2018;142(3):
e20180134
Prevalence of autism spectrum
 disorder among children aged 8 years -
Autism and Developmental Disabilities
Monitoring Network, 11 sites, United
4. Hisle-Gorman E, Susi A, Stokes T,
Gorman G, Erdie-Lalena C, Nylund CM.
Prenatal, perinatal, and neonatal risk
factors of autism spectrum disorder.
Pediatr Res. 2018;84(2):190–198
5. Kuzniiewicz MW, Wi S, Qian Y, Walsh EM,
Armstrong MA, Croen LA. Prevalence
and neonatal factors associated with
autism spectrum disorders in preterm
neurodevelopmental trajectories for
autism spectrum disorder in children
146(4):e20200297
7. Landa RJ, Gross AL, Stuart EA, Faherty A.
Developmental trajectories in children
with and without autism spectrum
 disorders: the first 3 years. *Child Dev*
2013;84(2):429–442
Early developmental trajectories
associated with ASD in infants with
tuberous sclerosis complex. *Neurology*
2014;83(2):160–168
9. Nishimura T, Takei N, Tsuchiya KJ.
Neurodevelopmental trajectory during
infancy and diagnosis of autism
spectrum disorder as an outcome at
32 months of age. *Epidemiology*. 2019;
30(suppl 1):S9–S14
10. Nishimura T, Takei N, Tsuchiya KJ, Asano
R, Mori N. Identification of
neurodevelopmental trajectories in
infancy and of risk factors affecting
deviant development: a longitudinal
birth cohort study. *Int J Epidemiol.*
2016;45(2):543–553
11. Limperopoulos C, Bassan H, Gauvreau K,
et al. Does cerebellar injury in
premature infants contribute to the
high prevalence of long-term cognitive,
learning, and behavioral disability in
584–593
12. Volpe JJ. Brain injury in premature
infants: a complex amalgam of
destructive and developmental
110–124
13. Padilla N, Eklöf E, Mårtensson GE, Boîte
S, Lagercrantz H, Adén U. Poor brain
growth in extremely preterm
neonates long before the onset of
autism spectrum disorder
1245–1252
Interneuron development is disrupted
in preterm brains with diffuse white
matter injury: observations in mouse
and human. *Front Physiol*. 2019;
10:955
15. Bowers K, Wink LK, Pottenger A,
McDougall CJ, Erickson C. Phenotypic
differences in individuals with autism
spectrum disorder born preterm and
758–763

SK.
Predicting Autism Spectrum Disorder in Very Preterm Infants
Janet S. Soul and Sarah J. Spence

Pediatrics 2020;146;
DOI: 10.1542/peds.2020-019448 originally published online September 8, 2020;

Updated Information & Services
including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/146/4/e2020019448

References
This article cites 15 articles, 3 of which you can access for free at:
http://pediatrics.aappublications.org/content/146/4/e2020019448#BIBL

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.aappublications.org/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
http://www.aappublications.org/site/misc/reprints.xhtml
Predicting Autism Spectrum Disorder in Very Preterm Infants
Janet S. Soul and Sarah J. Spence
Pediatrics 2020;146;
DOI: 10.1542/peds.2020-019448 originally published online September 8, 2020;

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/146/4/e2020019448