Severe Coronavirus Bronchiolitis in the Pre–COVID-19 Era

Jonathan M. Mansbach, MD, MPH,a Kohei Hasegawa, MD, MPH,b Pedro A. Piedra, MD,c Ashley F. Sullivan, MPH,b Carlos A. Camargo, Jr, MD, DrPHd

The first human coronaviruses, OC43 and 229E, were discovered in the 1960s, but NL63 and HKU1 were discovered in 2004 and 2005, respectively. These 4 endemic coronaviruses cause respiratory illness in hospitalized children,1 as does the newest coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19).2–4 Despite many SARS-CoV-2 publications, there remains limited information about viral coinfections and the importance of viral load to acute severity. Given the potential for useful insights into SARS-CoV-2 childhood infections, we analyzed data from 2 prospective multicenter cohorts of children hospitalized with bronchiolitis in the pre–COVID-19 era to examine endemic coronavirus bronchiolitis, specifically viral coinfections and the association between viral load and acute severity.

METHODS

As previously described,5,6 we conducted the 30th Multicenter Airway Research Collaboration (MARC-30) and 35th Multicenter Airway Research Collaboration (MARC-35) studies during 2007–2010 and 2011–2014, respectively. Although both studies enrolled children hospitalized with bronchiolitis, MARC-30 enrolled children aged <2 years, and MARC-35 enrolled infants aged <1 year at sites across the United States. Both studies used similar protocols, were approved by the institutional review board, and excluded children with known heart and lung disease, immunodeficiency, immunosuppression, or gestational age <32 weeks.

In both studies, site teams conducted structured interviews, conducted medical record reviews, and collected nasopharyngeal aspirates within 24 hours of hospitalization. For both studies, the same laboratory used real-time reverse transcriptase polymerase chain reaction to test for the 4 endemic coronaviruses (OC43, 229E, NL63, and HKU1) and 14 other viruses, including respiratory syncytial virus (RSV).5 Viral genomic load was quantified in MARC-35 by using the cycle threshold (Ct) value.

The current analysis is focused on children with solo RSV or coronavirus infection in the pre–COVID-19 era. After using descriptive statistics, we examined the differences in the risk of intensive care use (ie, positive pressure ventilation or intensive care admission) between solo RSV infection and RSV and coronavirus coinfection by constructing a generalized linear mixed model with logit link that adjusts for age and patient clustering within sites. To investigate the association of coronavirus genomic load with the severity outcome, we also fit a logistic regression model adjusting for age and RSV coinfection status. The covariates were selected on the basis of clinical plausibility and a priori knowledge.

RESULTS

Of 1880 children hospitalized with bronchiolitis in the analytic cohort, 219 (12%) had 1 of the 4 endemic coronaviruses. Although most patient...
characteristics did not differ, compared with children with solo RSV infection, children with coronavirus bronchiolitis were older and more likely male (Table 1). Only 32 (15%) infections were solo coronavirus infections. The most common coinfecting virus was RSV (Table 1).

Among the 4 coronaviruses, there were no significant differences in patient characteristics, except for month of hospitalization (data not shown). In a multivariable model, compared with solo RSV infection, RSV and coronavirus coinfection did not have a significantly different risk of intensive care use (odds ratio 1.43;
95% confidence interval [CI] 0.94–2.18; \(P = .10 \)). However, a higher genomic load of coronavirus (ie, lower Ct value) was associated with a higher risk of intensive care use (odds ratio 1.22 per 1-U decrease in Ct value; 95% CI 1.02–1.51; \(P = .04 \); Fig 1).

DISCUSSION

On the basis of 2 large prospective multicenter cohorts of children hospitalized with bronchiolitis in the pre–COVID-19 era, we found that 85% of endemic coronavirus bronchiolitis cases had a coinfecting virus. In other words, identifying RSV or another respiratory virus would not exclude the possibility of endemic coronavirus infection in children hospitalized for bronchiolitis. Although SARS-CoV-2 may interact with other respiratory viruses differently from these 4 endemic coronaviruses, comprehensive virology data in children hospitalized with COVID-19 are lacking. Until SARS-CoV-2 testing is more rapid and widely available and false-negatives are better understood, the present results are a warning to clinicians currently caring for children with respiratory symptoms that identifying a common respiratory virus (eg, RSV or rhinovirus) does not exclude coinfection with SARS-CoV-2.5 Coinfection with endemic coronavirus was not associated with increased disease severity. However, similar to RSV and different from rhinovirus,8,9 higher coronavirus viral load was associated with higher severity of illness. These viral load results suggest that antiviral agents may benefit children with endemic coronavirus bronchiolitis and possibly children with COVID-19.10

In 2 prospective multicenter cohorts of infants hospitalized with endemic coronavirus bronchiolitis, we found that viral coinfections are common and that higher viral load is associated with higher acute severity.

ACKNOWLEDGMENTS

We thank the MARC-30 and MARC-35 hospitals and research personnel for their dedication to bronchiolitis and asthma research. We also thank Alkis Togias, MD, for his ongoing support.

ABBREVIATIONS

CI: confidence interval
COVID-19: coronavirus disease 2019
Ct: cycle threshold
MARC-30: 30th Multicenter Airway Research Collaboration
MARC-35: 35th Multicenter Airway Research Collaboration
RSV: respiratory syncytial virus
SARS-CoV-2: severe acute respiratory syndrome coronavirus 2
FUNDING: Supported by grants U01 AI-067693, U01 AI-087881, R01 AI-114552, R01 AI-108588, R01 AI-127507, R01 AI-134940, and R01 AI-137091 from the National Institute of Allergy and Infectious Diseases; R21 HL-129909 from the National Heart, Lung, and Blood Institute; and UG3/UH3 OD-023253 from the Office of the Director at the National Institutes of Health (Bethesda, MD). The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Funded by the National Institutes of Health (NIH).

POTENTIAL CONFLICT OF INTEREST: Dr Piedra provided bronchiolitis-related consultation for Gilead, Novavax, and Regeneron; the other authors have indicated they have no potential conflicts of interest to disclose.

REFERENCES
Severe Coronavirus Bronchiolitis in the Pre–COVID-19 Era
Pediatrics 2020;146;
DOI: 10.1542/peds.2020-1267 originally published online June 10, 2020;

Updated Information & Services
including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/146/3/e20201267

References
This article cites 10 articles, 2 of which you can access for free at:
http://pediatrics.aappublications.org/content/146/3/e20201267#BIBL

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Pulmonology
http://www.aappublications.org/cgi/collection/pulmonology_sub
Bronchiolitis
http://www.aappublications.org/cgi/collection/bronchiolitis_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.aappublications.org/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
http://www.aappublications.org/site/misc/reprints.xhtml

American Academy of Pediatrics
DEDICATED TO THE HEALTH OF ALL CHILDREN®
Severe Coronavirus Bronchiolitis in the Pre–COVID-19 Era
Jonathan M. Mansbach, Kohei Hasegawa, Pedro A. Piedra, Ashley F. Sullivan and
Carlos A. Camargo Jr
Pediatrics 2020;146;
DOI: 10.1542/peds.2020-1267 originally published online June 10, 2020;

The online version of this article, along with updated information and services, is
located on the World Wide Web at:
http://pediatrics.aappublications.org/content/146/3/e20201267