Continuous Versus Intermittent Vancomycin Infusions in Infants: A Randomized Controlled Trial

Amanda Gwee, MBBS, FRACP, DTM&H,a,b,c Noel Cranswick, MBBS, FRACP, BMedSc,a,b,c Brendan McMullan, MBBS, FRACP, BMed(Hons),d,e Elizabeth Perkins, RM,f Srinivas Bolisetty, MBBS, FRACP, MD,e,f Kaya Gardiner, BN,f Andrew Daley, MMed(ClinEpi),a,c,d Meredith Ward, MBBS, FRACP,c,f Roberto Chiletii, OICM, MD,a,c Susan Donath, MA,a,c Rodney Hunt, BMBS, MMed, MRCP(UK), FRACP,c,f Nigel Curtis, BA, MBBS, MA, DCH, MRCP, DTM&H, FRCPCH, PhD,a,b,c

**Abstract**

**BACKGROUND:** In adults, continuous infusions of vancomycin (CIV) are associated with earlier attainment of target drug concentrations, require fewer blood samples for monitoring, and may reduce drug toxicity. We aimed to determine, in young infants, if CIV or intermittent infusions of vancomycin (IIV) better achieves target vancomycin concentrations at the first steady-state level and to compare the frequency of drug-related adverse effects.

**METHODS:** In a multicenter randomized controlled trial in 2 tertiary neonatal units over a 40-month period, young infants aged 0 to 90 days requiring vancomycin therapy for at least 48 hours were randomly assigned to CIV and IIV.

**RESULTS:** Of 111 infants randomized, 104 were included in the intention-to-treat analysis. Baseline characteristics were similar for both groups. The proportion of infants achieving target concentrations at the first steady-state level was higher for CIV compared with IIV (45 in 53 [85%] vs 21 in 51 [41%]; \( P < .001 \)). Fewer dose adjustments were required in the CIV group (median 0; range 0–1) compared with the IIV group (median 1; range 0–3; \( P < .001 \)). The mean daily dose required to achieve target concentrations was lower with CIV compared with IIV (40.6 [SD 10.7] vs 60.6 [SD 53.0] mg/kg per day, respectively; \( P = .01 \)). No drug-related adverse effects occurred in either group.

**CONCLUSIONS:** In young infants, CIV is associated with earlier and improved attainment of target concentrations compared with IIV. Lower total daily doses are required to achieve target levels with CIV. There is no difference in the rate of drug-related adverse effects.

**WHAT'S KNOWN ON THIS SUBJECT:** In adults, continuous infusions of vancomycin (CIV) are associated with earlier attainment of target drug concentrations, require fewer blood samples for monitoring, and may reduce drug toxicity. There are no trials comparing CIV to intermittent infusions of vancomycin in children.

**WHAT THIS STUDY ADDS:** CIV is associated with earlier and improved attainment of target concentrations compared with IIV. Additionally, lower total daily doses are required to achieve target levels with CIV. There is no difference in the rate of drug-related adverse effects.


---

**aDepartment of Paediatrics, The University of Melbourne, Parkville, Australia; bThe Royal Children’s Hospital Melbourne, Parkville, Australia; cMurdoch Children’s Research Institute, Parkville, Australia; dSydney Children’s Hospital, Randwick, Australia; eDepartment of Paediatrics, University of New South Wales, Sydney, Australia; and fRoyal Hospital for Women, Randwick, Australia**

Dr Gwee conceptualized and designed the study, drafted the initial protocol and manuscript, designed the data collection instruments, collected data, conducted the initial analyses, drafted the initial manuscript, and reviewed and revised the manuscript; Drs Cranswick and Curtis conceptualized and designed the study and reviewed and revised the manuscript; Drs Chiletii, McMullan, Daley, Bolisetty, and Ward collected data and reviewed and revised the manuscript; Dr Hunt and Ms Perkins contributed to the protocol design, collected data, and reviewed and revised the manuscript; Ms Gardiner assisted with the protocol and design of the data collection instruments and reviewed and revised the manuscript; Ms Donath oversaw the statistical analysis plan, assisted with data analysis, and reviewed and revised the manuscript; and all authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.
Vancomycin is routinely administered as intermittent infusions multiple times per day. Therapeutic drug monitoring (TDM) is required to ensure that antibiotic levels are sufficient for effective bacterial killing. In young infants, this involves the measurement of trough concentrations (immediately before a dose), with target vancomycin levels ranging from 10 to 20 mg/L.² There is no consensus on the optimal dosing regimen for vancomycin in this age group, and this is reflected by the wide diversity in the dosing regimens of intermittent infusions of vancomycin (IIV) used worldwide. Studies reveal that these current dosing recommendations result in poor attainment of target vancomycin levels.³⁻⁵ Another problem with IIV dosing is the incorrect timing of trough samples, resulting in inappropriate dose adjustments.⁶ Continuous infusions of vancomycin (CIV) are an attractive alternative to IIV in young infants. Data from adult studies reveal an improved attainment of target vancomycin levels and a reduced incidence of drug-related nephrotoxicity with CIV compared with IIV.⁷ An additional benefit is that the timing of blood samples can be more flexible because they can be taken any time at steady state rather than requiring trough levels. This allows for TDM sampling at the same time as other blood tests, which is particularly important in the NICU setting, where infants are often having repeated blood tests.⁸ However, potential disadvantages of CIV include the risks of drug incompatibilities and reduced line availability.

We report a randomized controlled trial (RCT) of CIV versus IIV in young infants to determine which results in improved attainment of target concentrations at the first steady-state level.

**METHODS**

The complete study protocol is published in an open-access journal, and the trial was registered at www.clinicaltrials.gov (identifier NCT02210169).⁷ Ethics approval was obtained from The Royal Children’s Hospital (RCH) Melbourne Human Research Ethics Committee (34030) and the South Eastern Sydney Local Health District Human Research Ethics Committee (SSA 16/G/335).

**Trial Design**

This was a multicenter, nonblinded, RCT conducted over a 40-month period (September 2014–December 2017).

Three main changes were made to the initial trial protocol after commencement: (1) the inclusion of infants with a postnatal age of 0 to 90 days (from 0 to 30 days) because many young infants in the neonatal unit were >30 days of age; (2) for vancomycin courses >7 days, baseline blood tests were repeated weekly instead of every 48 hours to minimize repeated blood tests; and (3) change in the timing of vancomycin TDM for patients receiving 4-hourly dosing to recommend that it is taken before the fourth dose instead of before the third dose.

**Participants**

The study sites included the NICU and PICU at RCH Melbourne and the NICU at The Royal Hospital for Women (RHW) in Sydney. Participants were eligible if they were aged between 0 and 90 days and it was anticipated that vancomycin therapy would be administered for ≥48 hours. Exclusion criteria included: corrected gestational age (CGA) <25 weeks, known glycopeptide allergy, renal impairment, infants receiving extracorporeal membrane oxygenation, vancomycin administration within the previous 72 hours, and previous randomization in the study.

**Interventions**

Before randomization, the treating clinician or study investigator provided both written and verbal information to the parents and obtained consent. Patients were randomly assigned in a 1:1 ratio to receive either standard care, consisting of IIV (dose recommended in the *British National Formulary for Children*¹⁰), or CIV after a loading dose of 15 mg/kg infused over 1 hour (dose published by Patel et al⁶; Tables 1 and 2). The target trough level for IIV was 10 to 20 mg/L, and the steady-state level for CIV was 15 to 25 mg/L.⁶,¹¹ A protocol for dose adjustment was also provided (Tables 3 and 4).

All patients had the following blood tests taken at or before randomization: full blood examination; urea, electrolytes, and creatinine; C-reactive protein (CRP); albumin level; and blood culture if a new infection was suspected. A full blood examination and urea, electrolytes, and creatinine testing was repeated every 48 hours for the first week then weekly thereafter during vancomycin therapy. Repeat measurements of CRP were done every 48 hours only if the first CRP measurement was elevated. A repeat blood culture was taken the day after clinical staff were notified of a positive result whenever possible.

For infants receiving IIV, vancomycin levels were measured within 1 hour.
after the first dose (peak level), before (trough level), and peak level after the third dose. If the participant was receiving 4-hourly dosing, levels were measured before and after the fourth dose. If the trough vancomycin level fell within the target range of 10 to 20 mg/L, an additional trough level was taken before the sixth dose, and if this second level was within range, trough levels were then repeated every 3 days. If the trough vancomycin level was <10 mg/L or >20 mg/L, after dose adjustment, trough and peak levels were taken before and after the third adjusted dose.

For those infants receiving CIV, a vancomycin level was measured immediately after the loading dose and 18 to 30 hours after the commencement of infusion. Samples were taken at the same time as other blood tests whenever possible. If the steady-state level was within the target range of 15 to 25 mg/L, the level was repeated 18 to 30 hours after the last level, and if this second level was within range, the level was repeated every 3 days. If CIV was paused to enable the administration of a drug that was incompatible with vancomycin, this was recorded.

Study involvement ceased when vancomycin therapy was discontinued. Treating clinicians documented any adverse events.

Outcomes
The primary outcome measure was the difference in the proportion of participants achieving target vancomycin levels at their first steady-state level (when the drug level is in equilibrium).

Secondary outcomes included (1) the difference in the proportion of participants who experienced drug-related adverse effects, (2) the time taken to achieve target vancomycin levels, and (3) determining the pharmacokinetics and pharmacodynamics of vancomycin by using nonlinear mixed-effects modeling (outcomes 2 and 3 are reported in a separate article). No changes were made to the trial outcomes after commencement.

Sample Size Calculation
The sample size of 200 young infants was calculated by using Pearson’s χ² test to detect a difference of 20% in the proportion of participants achieving target vancomycin levels between the 2 groups with a power of 80%. An interim analysis was not done.

Randomization
The randomization schedule was prepared by an independent statistician using random permuted blocks and stratified by the 2 sites. Infants were randomly assigned by the treating clinician or a member of the study team. At RCH, allocation was concealed in consecutively numbered, opaque, sealed envelopes, and at RHW, an online randomization procedure in a Research Electronic Data Capture program was used.

Statistical Methods
Randomly assigned infants who had the first trough vancomycin level (IIV) or steady-state level (CIV) measured were included in the intention-to-treat analysis. The difference in proportions was assessed by using a χ² test together with a 95% confidence interval (CI). Normally distributed continuous outcomes were compared by using paired t tests. Median values were compared by using a Wilcoxon rank test, and CIs for the difference of medians were compared by using bootstrap. Data were analyzed by using Stata 15 (Stata Corp, College Station, TX).

RESULTS
Over the 40-month study period, 2023 young infants were screened for eligibility. Of these, 486 were approached for consent, and we obtained consent for 298 (61%) of them. At RCH, infants who were thought likely to need vancomycin were preconsented for participation in the trial. In total, 111 young infants were randomly assigned, 54 to IIV and 57 to CIV, of whom 51 and 53, respectively, were included in the intention-to-treat analysis (Fig 1). On the basis of previous vancomycin usage at RCH, it was anticipated that recruitment would take 24 months. However, because of a change in antibiotic policy and the resultant reduced usage of vancomycin, the recruitment rate was slower than...
anticipated. Recruitment was therefore terminated after a 40-month period.

**Baseline Characteristics**

Of the 104 infants included in the intention-to-treat analysis, 44% were boys with a mean birth weight of 2271 g and current weight of 2549 g. The mean gestational age was 34.0 weeks and postnatal age was 23 days (Table 5). The most common underlying diagnoses were prematurity (66%), exomphalos and/or gastrochisis (16%), bowel obstruction (13%), and congenital heart disease (12%). Indications for vancomycin therapy included suspected sepsis (65%), preceding positive blood culture result (11%), skin and soft tissue infection (11%), necrotizing enterocolitis (5%), and surgical prophylaxis (5%). Of the 92 infants who had blood cultures taken, 23 (25%) had a positive result, with CONS (58%), Enterococcus spp (9%), and Gram-negative bacteria (9%) being the most frequently isolated. In 3 of the blood cultures, 2 CONS species were isolated and therefore deemed to be contaminants. The mean duration of therapy was 5 days. Baseline characteristics were similar between both groups.

**Attainment of Target Levels**

The proportion of infants who achieved target concentrations at the first steady-state level was 21 of 51 (41%) in the IIV group compared with 45 of 53 (85%) in the CIV group ($P < .001$). No patients in either group had supratherapeutic concentrations at the first steady-state level.

For the infants who received IIV, achievement of target levels was low in all CGA dosing groups, with 15 of 34 (44%) in the 36- to 44-week CGA group, 5 of 12 (42%) in the 29- to 35-week CGA group, and 1 of 5 (20%) in the $<$29-week CGA group attaining target levels. In the CIV group, achievement of target concentrations was 8 in 10 (80%) and 24 in 30 (80%) for infants with a serum creatinine of $<$40 µmol/L and CGA of $\geq$40 weeks and $<$40 weeks, respectively. Target concentrations were achieved in all infants receiving CIV with a serum creatinine of 40 to 60 µmol/L (9 of 9; 100%) and $>$60 µmol/L (4 in 4; 100%).

Overall, 43 of 51 (84%) infants in the IIV group achieved target levels by the end of the study period compared to 84% in the CIV group.
with 51 of 53 (97%) infants in the CIV group \( (P = .04) \). The mean time to achieve the target concentration was greater for the IVI (33.6 hours; SD 38.8 hours) compared with the CIV group (27.1 hours; SD 10.8 hours; \( P = .003 \)). Fewer dose adjustments were required to achieve target levels in the CIV group (median 0; range 0–1) compared with the IVI group (median 1; range 0–3; \( P < .001 \)).

Six infants (12%) in the IVI group had supratherapeutic trough levels, ranging from 22 to 30 mg/L after the initial trough level. Similarly, there were 5 infants (9%) in the CIV group who subsequently had supratherapeutic steady-state levels, ranging from 26 to 29 mg/L.

The overall mean daily dose required to achieve target concentrations was 60.6 (SD 53.0) mg/kg per day with IVI and 40.6 (SD 10.7) mg/kg per day with CIV \( (P = .01; \text{Table } 6) \).

### Adverse Events

Serum creatinine levels were determined between 48 hours before initial dosing and 72 hours after vancomycin therapy in 48 of 51 (94%) infants in the IVI group and 51 of 53 (96%) infants in the CIV group. There was no increase in the creatinine levels at the end compared with at the start of therapy in the IVI group (35.4–31.2 µmol/L; SD 19.6–16.2 µmol/L; \( P = .01 \)) or in the CIV group (29.3–28.1 µmol/L; SD 12.1–10.7 µmol/L; \( P = .50 \)). One infant in each of the groups had a rise in creatinine level \( >1.5 \) times the baseline creatinine (IVI, 18–32 µmol/L; CIV, 24–45 µmol/L). Vancomycin was well tolerated, with no infants experiencing red man syndrome and no documented vancomycin-related adverse effects in either group.

Data on vascular access devices were available for 49 of 51 infants in the IVI group and all infants in the CIV group. The median number of vascular access devices was 1 in the IVI group and 1.5 in the CIV group \( (P = .06; CI = 0.412 \text{ to } 0.003) \). One patient in the CIV group was administered a drug that was incompatible with vancomycin through the same line, with no clinical adverse effects observed for the patient.

### Clinical Outcomes

Of the 9 infants in the IVI group and the 9 infants in the CIV group with Gram-positive bacteremia, repeat blood cultures were taken in 8 and 7 infants, respectively. The mean times to the clearance of bacteremia were 55.3 hours (SD 14.9 hours) with IVI and 46.1 hours (SD 10.3 hours) with...
CIV ($P = .62$). The vancomycin minimum inhibitory concentration (MIC) (the lowest antibiotic concentration that will inhibit bacterial growth) was determined for 16 of the 18 Gram-positive isolates (Table 7). No infants died of sepsis; however, 1 infant in the CIV group died because of complications of congenital heart disease.

**DISCUSSION**

This is the first RCT of vancomycin dosing in a pediatric population. We show that, compared with IIV, CIV results in earlier and improved attainment of target levels, requires only 1 dose adjustment, and lower total daily doses to achieve therapeutic levels. Vancomycin dosing is an important issue in young infants because, as was found in our trial, current IIV dosing regimens are associated with subtherapeutic levels in the majority of young infants.3,4,6,12 Furthermore, difficulties with taking accurately timed trough samples in a busy clinical environment is a common problem.6 One study in young infants reported that in 24% of vancomycin samples, the timing of the sample was missing, and 54% of samples required a repeat blood test because the time documented could not be interpreted. CIV provides an easier alternative for dosing and monitoring vancomycin in young infants.

The use of CIV was initially proposed to optimize the time above which the vancomycin concentration exceeds the bacterial MIC when the drug was thought to exhibit time-dependent bacterial killing. A retrospective cohort study of adults with methicillin-resistant *S. aureus* pneumonia revealed a reduction in mortality when vancomycin was administered as a continuous infusion.13 However, a meta-analysis of 1 RCT and 5 observational studies in adults revealed no difference in mortality, but the authors did report a lower risk of nephrotoxicity associated with CIV (relative risk 0.6; 95% CI 0.4 to 0.9; $P = .02$).7 Two subsequent systematic reviews revealed conflicting results: 1 revealed no difference in the rate of nephrotoxicity,14 whereas the other revealed a reduction in the incidence of nephrotoxicity (relative risk 0.61; 95% CI 0.47 to 0.80; $P < .001$).15 This difference was largely influenced by the inclusion of 1 retrospective observational study.16

CIV dosing regimens have been studied in 5 prospective cohort and 2 retrospective studies in young infants.5,11,17–21 However, in only 2 studies was CIV compared with IIV. The 1 prospective study in which researchers compared the 2 dosing regimens revealed an improved attainment of target concentrations with CIV (82%) compared with IIV (46%).6 A retrospective study also revealed that a greater proportion of patients achieved target levels with CIV compared with IIV (52.8% with CIV versus 34.1% with IIV). However, interpretation of this study is limited because target trough levels for IIV were low (between 5 and 10 mg/L).20 Overall, 4 studies of CIV (each using different dosing regimens) in young infants reported attainment of target vancomycin levels >80%.3,5,17,19,21 Importantly, in these studies, CIV was not associated with drug incompatibility6 or infusion-related side effects.6,17 As in our study, there was no difference in creatinine levels in young infants treated with IIV versus CIV.6

The evidence for target drug concentrations when using CIV is scarce. In a systematic review of adult studies in which researchers compared IIV and CIV, 5 of 6 studies targeted concentrations of 20 to 25 mg/L or 20 to 30 mg/L,7 whereas in the studies of young infants, target levels ranging from 10 to 15 mg/L to 25 to 30 mg/L have been used.8 Although existing data support a pharmacodynamic target for *S. aureus* infections of an area under the concentration-time curve over 24 hours (AUC$_{24}$/MIC) >400, the target for CONS infections (the most common pathogen causing late-onset sepsis in young infants) is poorly defined. The authors of in vitro pharmacodynamic studies have described time-dependent killing for *Staphylococcus epidermidis*,22,23 and the authors of an in vivo murine model reported no significant difference in the mortality rate in mice with a higher AUC$_{24}$/MIC ratio.24

Although there are population pharmacokinetic models that allow for the calculation of AUC with IIV dosing,25 the use of CIV enables the AUC$_{24}$ to be easily calculated by using

---

**TABLE 6 Dose in mg/kg per Day Required to Achieve Target Concentrations**

<table>
<thead>
<tr>
<th>GGA</th>
<th>IVV, Mean (SD)</th>
<th>CIV, Mean (SD)</th>
<th>$P$</th>
<th>Creatinine</th>
<th>IVV, Mean (SD)</th>
<th>CIV, Mean (SD)</th>
<th>$P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;29</td>
<td>37.0 (21.7)</td>
<td>25.0 (5.8)</td>
<td>.33</td>
<td>&lt;40</td>
<td>72.9 (63.5)</td>
<td>45.4 (7.2)</td>
<td>.01</td>
</tr>
<tr>
<td>29–35</td>
<td>40.8 (14.0)</td>
<td>33.9 (7.0)</td>
<td>.21</td>
<td>40–60</td>
<td>41.9 (13.1)</td>
<td>28.6 (5.3)</td>
<td>.01</td>
</tr>
<tr>
<td>36–44</td>
<td>67.7 (59.3)</td>
<td>43.8 (9.7)</td>
<td>.02</td>
<td>&gt;60</td>
<td>34.8 (7.9)</td>
<td>19.9 (0.2)</td>
<td>.008</td>
</tr>
</tbody>
</table>

---

**TABLE 7 MIC Values Determined by Using Etest (bioMérieux, Crappone, France) of Gram-positive Isolates From Blood Cultures (n = 16)**

<table>
<thead>
<tr>
<th>Organism</th>
<th>Vancomycin MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5 mg/L</td>
</tr>
<tr>
<td><em>S. epidermidis</em></td>
<td>—</td>
</tr>
<tr>
<td><em>Staphylococcus capitis</em></td>
<td>—</td>
</tr>
<tr>
<td><em>S. mitis group</em></td>
<td>1</td>
</tr>
<tr>
<td><em>S. aureus</em></td>
<td>1</td>
</tr>
<tr>
<td><em>Enterococcus faecalis</em></td>
<td>—</td>
</tr>
</tbody>
</table>

—, not applicable.
the equation AUC$_{24}$ = serum concentration $\times$ 24 mg.h/L. Therefore, this also allows for the calculation of the target vancomycin level if the pharmacodynamic target is known. For example, for a S aureus isolate with a specific MIC, using the formula AUC$_{24}$/MIC >400 enables the calculation of the target concentration (ie, target concentration = [400 $\times$ MIC]/24 mg/L). Similarly, CIV also allows for a simple linear calculation of dose adjustment as is used in our protocol. This resulted in attainment of target concentrations in all infants in our study after 1 dose adjustment.

In contrast to studies in adults,14 our study revealed that vancomycin-related adverse effects are extremely uncommon in young infants regardless of the method of administration. Importantly, infants in the CIV group required lower total daily doses of vancomycin compared with those in the IIV group. The relationship between vancomycin exposure and nephrotoxicity is poorly understood. However, a recent in vivo study of rats revealed that an increase in urinary acute kidney injury biomarkers was associated with the area under the concentration-time curve over 0 to 24 hours and the maximum drug concentration over a 24-hour period.26 CIV is associated with lower maximum drug concentrations over a 24-hour period and therefore theoretically could be associated with a reduced risk of nephrotoxicity. One of the barriers to the routine use of CIV is a concern about the need for additional line access and the associated potential risks (eg, infection and extravasation). Although our study was not powered to detect this, we did not observe any significant increase in the need for vascular access devices or issues of drug incompatibility. This is likely explained by the fact that young infants in whom vascular access was limited were excluded, and in addition, CIV was paused to administer incompatible drugs.

One limitation of our study is that it was not powered to detect a difference in vancomycin-related nephrotoxicity or infection-related mortality because these events are infrequent; recruitment of a sufficient sample size to detect this would not have been feasible.27,28 Instead, we are developing a population pharmacodynamic model to assess this. A slow recruitment rate attributable to a change in empirical antibiotic guidelines required us to terminate our trial before reaching our planned sample size. However, because the effect size in our trial was considerably larger than the estimate used in our sample size calculation, the primary outcome of our trial was statistically significant. Our trial did not include an analysis of costs, although a RCT in adults revealed a significant reduction in 10-day treatment costs with CIV.29 Audiology assessments were not done specifically for the study because the ototoxicity of vancomycin is controversial, particularly in a population of premature infants receiving concomitant aminoglycosides.2,30 AUC$_{24}$/MIC ratios were calculated by developing a nonlinear mixed-effects model and will be reported separately.

**CONCLUSIONS**

In young infants, CIV is associated with earlier and improved attainment of target concentrations compared with the current standard of care, IIV. Lower total daily doses and fewer dose adjustments are required to achieve therapeutic levels with CIV. Vancomycin-related drug toxicity was rare with both CIV and IIV. Future studies should be focused on the impact of CIV compared with IIV on clinical outcomes of Gram-positive infections.

**ACKNOWLEDGMENTS**

We thank the staff, patients, and their families at RCH Melbourne and RHW in Sydney who were involved in the study. We also thank Prof Colin Powell, Drs Andrew Watkins and Yashwant Sinha, Mr Tibor Schuster, and Ms Lumine Na, who were on the data safety monitoring committee for this trial. We thank the Murdoch Children’s Research Institute, which funded the study. We also thank the National Health and Medical Research Council and Royal Australasian College of Physicians for Dr Gwee’s postgraduate scholarships. Dr Gwee had full access to all the data in the study and takes responsibility for the integrity of the data and accuracy of the data analysis.

**ABBREVIATIONS**

AUC$_{24}$: area under the concentration-time curve over 24 hours
CGA: corrected gestational age
CI: confidence interval
CIV: continuous infusions of vancomycin
CONS: coagulase-negative staphylococci
CRP: C-reactive protein
IIV: intermittent infusions of vancomycin
MIC: minimum inhibitory concentration
RCH: The Royal Children’s Hospital
RCT: randomized controlled trial
RHW: The Royal Hospital for Women
TDM: therapeutic drug monitoring
This trial has been registered at www.clinicaltrials.gov (identifier NCT02210169).

DOI: https://doi.org/10.1542/peds.2018-2179

Accepted for publication Nov 20, 2018

Address correspondence to Amanda Gwee, MBBS, FRACP, DTM&H, Department of Paediatrics, The University of Melbourne, The Royal Children’s Hospital Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia. E-mail: amanda.gwee@rch.org.au

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).

Copyright © 2019 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

FUNDING: Funded by the Murdoch Children’s Research Institute. Dr Gwee received the Royal Australasian College of Physicians Basser Research Entry Scholarship and the National Health and Medical Research Council Postgraduate Scholarship (GNT1150216).

POTENTIAL CONFLICT OF INTEREST: The authors have indicated they have no potential conflicts of interest to disclose.

REFERENCES

20. Demirel B, İmamoğlu E, Gursoy T, et al. Comparison of intermittent versus continuous vancomycin infusion for the


Continuous Versus Intermittent Vancomycin Infusions in Infants: A Randomized Controlled Trial
Amanda Gwee, Noel Cranswick, Brendan McMullan, Elizabeth Perkins, Srinivas Bolisetty, Kaya Gardiner, Andrew Daley, Meredith Ward, Roberto Chiletti, Susan Donath, Rodney Hunt and Nigel Curtis
Pediatrics 2019;143;
DOI: 10.1542/peds.2018-2179 originally published online January 30, 2019;

Updated Information & Services
including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/143/2/e20182179

References
This article cites 29 articles, 14 of which you can access for free at:
http://pediatrics.aappublications.org/content/143/2/e20182179#BIBL

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Fetus/Newborn Infant
http://www.aappublications.org/cgi/collection/fetus:newborn_infant_sub
Neonatology
http://www.aappublications.org/cgi/collection/neonatology_sub
Infectious Disease
http://www.aappublications.org/cgi/collection/infectious_diseases_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.aappublications.org/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
http://www.aappublications.org/site/misc/reprints.xhtml
Continuous Versus Intermittent Vancomycin Infusions in Infants: A Randomized Controlled Trial
Amanda Gwee, Noel Cranswick, Brendan McMullan, Elizabeth Perkins, Srinivas Bolisetty, Kaya Gardiner, Andrew Daley, Meredith Ward, Roberto Chiletto, Susan Donath, Rodney Hunt and Nigel Curtis
Pediatrics 2019:143;
DOI: 10.1542/peds.2018-2179 originally published online January 30, 2019;

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/143/2/e20182179