Online Family Problem-solving Treatment for Pediatric Traumatic Brain Injury

Shari L. Wade, PhD, a, b Eloise E. Kaizar, PhD, a Megan Narad, PhD, a Huaiyu Zang, MS, d, e Brad G. Kurowski, MD, MS, f Keith Owen Yeates, PhD, g, h H. Gerry Taylor, PhD, i Nanhua Zhang, PhD k

BACKGROUND AND OBJECTIVES: To determine whether online family problem-solving treatment (OFPST) is more effective in improving behavioral outcomes after pediatric traumatic brain injury with increasing time since injury.

METHODS: This was an individual participant data meta-analysis of outcome data from 5 randomized controlled trials of OFPST conducted between 2003 and 2016. We included 359 children ages 5 to 18 years who were hospitalized for moderate-to-severe traumatic brain injury 1 to 24 months earlier. Outcomes, assessed pre- and posttreatment, included parent-reported measures of externalizing, internalizing, and executive function behaviors and social competence.

RESULTS: Participants included 231 boys and 128 girls with an average age at injury of 13.6 years. Time since injury and age at injury moderated OFPST efficacy. For earlier ages and short time since injury, control participants demonstrated better externalizing problem scores than those receiving OFPST (Cohen’s d = 0.44; P = .008; n = 295), whereas at older ages and longer time since injury, children receiving OFPST had better scores (Cohen’s d = −0.60; P = .002). Children receiving OFPST were rated as having better executive functioning relative to control participants at a later age at injury, with greater effects seen at longer (Cohen’s d = −0.66; P = .009; n = 298) than shorter (Cohen’s d = −0.28; P = .028) time since injury.

CONCLUSIONS: OFPST may be more beneficial for older children and when begun after the initial months postinjury. With these findings, we shed light on the optimal application of family problem-solving treatments within the first 2 years after injury.

WHAT’S KNOWN ON THIS SUBJECT: Online family problem-solving treatment (OFPST) has been linked to improved executive functioning and reduced externalizing behaviors in adolescents after traumatic brain injury, with age and socioeconomic status moderating improvements. However, nothing is known regarding optimal treatment timing.

WHAT THIS STUDY ADDS: An individual participant data meta-analysis of 5 randomized controlled trials of OFPST versus online information and/or usual care involving 359 children revealed that OFPST delivery can be optimized by referring children who are postacute recovery and older at injury.

Dr Wade conceptualized and designed the study, obtained external funding, coordinated analyses, and drafted and revised the manuscript; Drs Kaizar and Zhang assisted in designing the study, designed and conducted the statistical analyses, and assisted in drafting and revising the manuscript; Drs Narad, Kurowski, Yeates, and Taylor contributed to the study conceptualization and design, refinement of analytic approaches, and manuscript drafting and revisions; Mr Zang designed and conducted the statistical analyses; and all authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

This trial has been registered at www.clinicaltrials.gov (identifiers NCT00178022, NCT00409058, NCT00409448, and NCT01042889).

DOI: https://doi.org/10.1542/peds.2018-0422

Effective treatments to reduce behavioral morbidity after pediatric traumatic brain injury (TBI) are greatly needed. Recent randomized controlled trials suggest that online family problem-solving therapy (OFPST) may be an effective approach to reducing behavior and executive function problems after TBI, particularly among older children and those who are at elevated risk secondary to disadvantaged social environments, more severe injuries, or preexisting behavior problems.

The timing of behavioral intervention delivery remains a key issue. Emerging behavior problems may not be apparent initially after TBI, making families reluctant to engage in treatment. Additionally, ongoing medical procedures and rehabilitation may tax the family’s ability to participate in additional treatments to address behavior problems. Understanding the optimal timing for behavioral treatments could inform medical decision-making and maximize treatment effectiveness.

Data regarding the optimal timing of behavioral or rehabilitation interventions in humans is largely lacking, although longitudinal follow-up studies of neurocognitive recovery after pediatric TBI reveal that recovery plateaus after the initial 12 to 24 months after injury. Animal models also offer conflicting information, with some studies suggesting that maximal neurologic reorganization occurs during the initial days and weeks after injury and others indicating that early intervention may prove iatrogenic. These limited and conflicting findings, coupled with evidence that behavioral recovery in children follows a different trajectory and is influenced by different factors than motor and cognitive recovery, underscore the need for further study regarding optimal timing of behavioral treatments for pediatric TBI.

Small samples and study heterogeneity with regard to age and time since injury have precluded the examination of the optimal timing of behavioral interventions for pediatric TBI to date. Individual participant data meta-analysis is a powerful tool for generating patient-centric conclusions from the analysis of collections of studies while capitalizing on their heterogeneity. In fact, the IMPACT (International Mission for Prognosis and Analysis of Clinical Trials in TBI) has served as a case study for the use of individual participant data meta-analysis of prognostic studies.

Using data from 5 randomized trials examining the efficacy of OFPST for the management of behavioral problems after childhood TBI, we investigated the influence of time since injury on treatment outcomes. Because previous research revealed the heterogeneity of treatment effects, new exploration of treatment timing is most meaningful in the context of other possible moderators, including child age and parental education. Additionally, we examined the joint moderating effects of injury severity and time since injury.

We hypothesized that time since injury would moderate the effectiveness of OFPST, with more pronounced benefits after OFPST seen when treatment is initiated later after injury. We further hypothesized that such differential effects would be strongest among older children, those of lower socioeconomic status (SES), and those with severe injuries.

METHODS

Overview

A comprehensive literature search was completed by a research librarian. The search yielded 138 studies with 28 from the current team. The 5 trials included here were the only ones involving a problem-solving, telehealth intervention for children with TBI. On the basis of this search, we jointly analyzed individual participant data from 5 randomized trials of OFPST for pediatric TBI involving 368 children between the ages of 5 and 18 years who were randomly assigned to the treatment or control group at 1 to 24 months after injury (Tables 1 and 2). These 5 studies conducted since 2000 included OFPST, and did not select for children already experiencing problems.

This project was approved by the institutional review board, and deidentified data were analyzed. Across studies, potentially eligible children were identified by using the trauma registries of participating hospitals. Researchers in some studies used additional means of identification (Table 1). All participants were hospitalized overnight after TBI and met criteria for a complicated mild (Glasgow Coma Scale [GCS] score of 13–15 with positive findings on imaging) to severe TBI (lowest GCS score of 3–8).

Treatment and Control Groups

Across studies, OFPST involved 7 to 10 core sessions in which families (the child with TBI, parents and/or caregivers, and siblings when available) were provided with training in cognitive reframing, problem-solving, communication skills, and behavior management. Families could receive up to 4 additional supplemental sessions to address specific issues (ie, marital stress, sibling behavior, pain, or sleep difficulties). Treatment combined self-guided online, didactic modules and synchronous video conference sessions with a trained therapist to review online content and problem-solve around a family-identified goal. Skype sessions were 45 to 60 minutes in length. Outcomes were
assessed before and after treatment (6 months later; Table 1).

Control Groups

Comparison conditions involved either access to online pediatric TBI resources (4 studies) or usual psychosocial care (1 study). Because these conditions are similar, we treated them as a single group. Participants who were randomly assigned to alternative active treatments in 2 of the trials were excluded.

Measures

Outcomes were assessed via interview and instrument completion before treatment initiation and 6 months afterward.

Background Interview

The parent and/or primary caregiver completed an interview regarding the child’s medical and educational history. They also reported the parent’s highest level of education, which served as a proxy for SES.

Injury Information

A research coordinator reviewed the medical chart and abstracted information regarding the injury mechanism, injury severity, and length of stay.

Child Behavior Checklist

Parents completed the Child Behavior Checklist (CBCL), a 112-item rating scale of child behavioral symptoms. The CBCL has high validity and reliability and is a widely used indicator of child adjustment. We examined t scores on the Internalizing Problems and Externalizing Problems scales.

Behavioral Rating Inventory of Executive Functions

Parents completed the Behavioral Rating Inventory of Executive Functions (BRIEF), an 86-item rating scale of everyday executive function that has been validated in both normative and TBI samples. The Global Executive Composite (GEC) provided an overall index of executive function behaviors.

Home and Community Social Behavior Scale

Parents completed the Social Competence Scale of the Home and Community Social Behavior Scale (HCSBS) to assess social
The HCSBS is well validated in relation to other social behavior measures and has good reliability.28

Data Management and Statistical Analysis

Because the current authors helped design the included trials, measures overlapped significantly across studies. This consistency obviated many barriers to individual participant data meta-analyses17 and enabled us to focus on high-quality studies with largely consistent procedures.29 Variables were recoded for consistency across studies, and data checks were used to identify potential inconsistencies. Nine cases were excluded because of local irregularity in treatment implementation that risked biasing the analyses. Fifty-one of the remaining cases had no measures at follow-up for an overall attrition rate of 14.27%. Additionally, 4 patients who had no TBI severity record and 4 to 5 participants who did not complete 1 or more follow-up measures are excluded from relevant analyses (Table 3). Analyzable sample sizes for child behavior, executive function, and social competence were 295, 298, and 294, respectively.

Demographic, premorbid, and injury characteristics were summarized by using descriptive statistics by study. Four linear mixed effect models were used to examine how OFPST timing may impact outcomes in 3 domains: child behavior, executive function, and social competence. Analyses were controlled for study-to-study differences (ie, potential similarities among participants in the same study) by including a random effect for the study indicator. All analyses also were adjusted for baseline score and child sex. Other potentially important control variables and treatment moderators were identified via backward elimination. Analyses began with a complex model that included a 3-way interaction among treatment, injury severity, and time since injury as well as treatment moderation by age at injury and parental education via 2-way interaction terms. More parsimonious models were identified by iteratively removing terms via F-tests based on a within-domain

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All</th>
<th>Online</th>
<th>CDC</th>
<th>TOPS Original</th>
<th>CAPS</th>
<th>TOPS RRTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>359</td>
<td>43</td>
<td>42</td>
<td>41</td>
<td>132</td>
<td>101</td>
</tr>
<tr>
<td>Site, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cincinnati</td>
<td>174 (48.5)</td>
<td>43 (100.0)</td>
<td>42 (100.0)</td>
<td>16 (39.0)</td>
<td>45 (34.1)</td>
<td>28 (27.7)</td>
</tr>
<tr>
<td>Cleveland</td>
<td>62 (17.3)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>41 (31.1)</td>
<td>21 (20.8)</td>
</tr>
<tr>
<td>Columbus</td>
<td>57 (15.9)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>25 (61.0)</td>
<td>0 (0.0)</td>
<td>32 (31.7)</td>
</tr>
<tr>
<td>Denver</td>
<td>56 (15.6)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>36 (27.3)</td>
<td>20 (19.8)</td>
</tr>
<tr>
<td>Mayo Clinic</td>
<td>10 (2.8)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>10 (7.6)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>188 (62.5)</td>
<td>21 (55.3)</td>
<td>22 (56.4)</td>
<td>17 (48.6)</td>
<td>78 (65.5)</td>
<td>50 (71.4)</td>
</tr>
<tr>
<td>White race, n (%)</td>
<td>251 (83.4)</td>
<td>26 (73.7)</td>
<td>33 (84.6)</td>
<td>32 (91.4)</td>
<td>98 (82.4)</td>
<td>60 (85.7)</td>
</tr>
<tr>
<td>Child of Hispanic and/or Latino ethnicity, n (%)</td>
<td>16 (4.5)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>2 (4.9)</td>
<td>6 (4.5)</td>
<td>8 (7.9)</td>
</tr>
<tr>
<td>Primary caregiver, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother</td>
<td>314 (87.5)</td>
<td>38 (88.4)</td>
<td>37 (88.1)</td>
<td>38 (92.7)</td>
<td>115 (87.1)</td>
<td>86 (85.1)</td>
</tr>
<tr>
<td>Father</td>
<td>34 (9.5)</td>
<td>5 (11.6)</td>
<td>1 (2.4)</td>
<td>2 (4.9)</td>
<td>13 (9.8)</td>
<td>13 (12.9)</td>
</tr>
<tr>
<td>Other</td>
<td>11 (3.1)</td>
<td>0 (0.0)</td>
<td>4 (9.5)</td>
<td>1 (2.4)</td>
<td>4 (3.0)</td>
<td>2 (2.0)</td>
</tr>
<tr>
<td>Parental education, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than HS</td>
<td>32 (8.9)</td>
<td>10 (23.3)</td>
<td>3 (7.1)</td>
<td>3 (7.3)</td>
<td>9 (6.8)</td>
<td>7 (6.9)</td>
</tr>
<tr>
<td>HS and/or GED</td>
<td>156 (37.9)</td>
<td>13 (30.2)</td>
<td>19 (45.2)</td>
<td>14 (34.1)</td>
<td>52 (38.4)</td>
<td>38 (37.6)</td>
</tr>
<tr>
<td>More than HS</td>
<td>191 (53.2)</td>
<td>20 (46.5)</td>
<td>20 (47.2)</td>
<td>24 (58.5)</td>
<td>71 (53.8)</td>
<td>56 (55.4)</td>
</tr>
<tr>
<td>Married, n (%)</td>
<td>214 (59.6)</td>
<td>20 (46.5)</td>
<td>26 (61.8)</td>
<td>28 (68.9)</td>
<td>82 (62.1)</td>
<td>58 (57.4)</td>
</tr>
<tr>
<td>Age at injury, y, n (%)</td>
<td>13.5 (2.8)</td>
<td>10.2 (3.2)</td>
<td>11.8 (3.5)</td>
<td>13.7 (2.5)</td>
<td>14.5 (1.7)</td>
<td>14.4 (2.1)</td>
</tr>
<tr>
<td>Time since injury, mo, n (%)</td>
<td>6.1 (5.0)</td>
<td>13.4 (6.9)</td>
<td>4.2 (3.2)</td>
<td>9.3 (5.1)</td>
<td>3.6 (1.8)</td>
<td>5.7 (3.9)</td>
</tr>
<tr>
<td>TBI severity, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>141 (39.3)</td>
<td>12 (27.9)</td>
<td>12 (28.6)</td>
<td>18 (43.9)</td>
<td>51 (38.6)</td>
<td>48 (47.5)</td>
</tr>
<tr>
<td>Moderate and/or complicated mild</td>
<td>215 (59.9)</td>
<td>28 (65.1)</td>
<td>30 (71.4)</td>
<td>25 (56.1)</td>
<td>81 (61.4)</td>
<td>53 (52.5)</td>
</tr>
<tr>
<td>ADHD premorbidity, mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>47 (13.1)</td>
<td>5 (11.6)</td>
<td>7 (16.7)</td>
<td>2 (4.9)</td>
<td>19 (14.4)</td>
<td>14 (15.9)</td>
</tr>
<tr>
<td>No</td>
<td>309 (86.1)</td>
<td>36 (83.7)</td>
<td>35 (83.3)</td>
<td>39 (85.1)</td>
<td>112 (84.8)</td>
<td>87 (86.1)</td>
</tr>
<tr>
<td>Other E/B premorbidity, mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>288 (80.2)</td>
<td>0 (0.0)</td>
<td>35 (83.3)</td>
<td>39 (85.1)</td>
<td>122 (92.4)</td>
<td>92 (91.1)</td>
</tr>
<tr>
<td>No</td>
<td>26 (7.2)</td>
<td>0 (0.0)</td>
<td>7 (16.7)</td>
<td>2 (4.9)</td>
<td>9 (6.8)</td>
<td>8 (7.9)</td>
</tr>
</tbody>
</table>

ADHD, attention-deficit/hyperactivity disorder; CAPS, counselor-assisted problem-solving; CDC, Centers for Disease Control and Prevention; E/B, emotional and/or behavioral; GED, general education diploma; HS, high school; RRTC, Rehabilitation Researcher and Training Center; TOPS, teenage online problem-solving.

a Number of participants assessed at baseline.

b Reported education of the primary caregiver.

c Unknown values are omitted from display but are included in the percentage calculation.
significance level of .05, which was corrected .025 (.05 divided by 2) for the behavioral domain with 2 outcomes. We evaluated model assumptions via residual plots and tests for curvilinear effects of continuous variables. In post hoc analyses, we examined model-based treatment effects at the 10th and 90th percentiles of time since injury (ie, 0.13 and 1.10 years, respectively) and age at injury (ie, 9.83 and 16.88 years, respectively). Analyses and plotting were completed by using SAS version 9.4 (SAS Institute, Inc, Cary, NC) and R version 3.4.3, respectively.

RESULTS

Child Behavior

Models revealed that both age at injury and time since injury moderated baseline-adjusted posttreatment ratings on the CBCL Externalizing Scale (Table 3). Post hoc contrasts (Fig 1) revealed that children with earlier ages at injury (9.83 years) and less time since injury at baseline (0.13 years) had lower average externalizing problem scores after receiving control treatment than those receiving OFPST (t[281] = 2.66; P = .008; effect size = 0.44), whereas the opposite pattern appears among children with later ages at injury (16.88 years) and longer times since injury (1.1 years; t[281] = −3.09; P = .002; effect size = −0.60). Among the other 2 subpopulations (children with later age at injury and shorter time since injury, or with earlier age at injury and longer time since injury), average externalizing problem scores at 6 months did not significantly differ across treatments. Age at injury, time since injury, and parental education failed to moderate OFPST effects on average internalizing problems. Contrary to previous analyses, the joint analysis did not indicate that parental education moderated treatment effects on child behavior and also provided no evidence that the moderation of treatment response by time since injury varied as a function of injury severity.

Executive Function Behaviors

Both age at injury and time since injury moderated OFPST’s effect on executive function behaviors at follow-up (Table 3). Post hoc contrasts (Fig 2) revealed a pattern of treatment effects among subpopulations defined by age at injury and time since injury similar to that described for externalizing behaviors. Among children injured at an earlier age and treated at a short time since injury, the control treatment may be preferable to OFPST (t[283] = 2.21; P = .03; effect size = 0.37). OFPST appeared to be beneficial relative to control among children who were injured at a later age at both longer (t[283] = −3.35; P = .009; effect size = −0.66) and shorter times since injury (t[283] = −2.21; P = .03; effect size = −0.28). As with the CBCL, no evidence was found that parental education or injury severity moderated the treatment effect.

Social Competence

Unlike other domains, parental education moderated treatment effects on social competence, but there was little evidence of similar moderation by time since injury (Table 3). Post hoc analyses revealed greater benefits of OFPST versus the control for social competence among the subpopulation whose parents who had less than a high school education (t[279] = 3.17; P = .002; effect size = 0.98). Time since injury,

Table 3	Regression Estimates and P Values From Parsimonious Regression Models			
Effect	Child Behavior	Executive Function	Social Competence	
	CBCL External (n = 295)	CBCL Internal (n = 295)	BRIEF GEC (n = 298)	HCSBS (n = 294)
Baseline score	0.76 (<0.001)	0.75 (<0.001)	0.82 (<0.001)	0.71 (<0.001)
Female sex	−1.96 (0.03)	−0.82 (0.41)	−1.88 (0.04)	0.76 (0.42)
OFPST	15.19 (0.03)	−0.95 (0.33)	15.60 (0.03)	1.76 (<0.001)
Age at injury	0.54 (0.01)	0.12 (0.52)	0.44 (0.57)	0.11 (0.53)
Parent education	0.32 (0.41)	−0.12 (0.96)	0.36 (0.41)	−0.12 (0.96)
Less than HS	−0.25 (0.41)	0.39 (0.96)	−0.65 (0.16)	−4.21 (0.22)
More than HS	−0.52 (0.41)	−0.12 (0.96)	−1.85 (0.16)	1.82 (0.22)
TBI severity	0.45 (0.63)	−0.62 (0.54)	−0.77 (0.41)	−0.18 (0.85)
Time since injury	2.12 (0.65)	2.12 (0.10)	0.28 (0.08)	−0.11 (0.93)
Age at injury, treatment, OFPST	−0.96 (0.004)	—	−1.08 (0.002)	—
Parent education, OFPST	—	—	—	7/88 (0.04)
Less than HS	—	—	—	−0.42 (0.04)
More than HS	—	—	—	—
Time since injury, OFPST	−5.28 (0.02)	—	−4.66 (0.04)	—

P values from F-tests of each variable’s exclusion from the model are shown. Coefficient estimates and tests are only reported for the covariates remaining in the parsimonious models after trimming. HS, high school; —, not applicable.

a Number of cases included in each analysis.

b Baseline score is the relevant response score as measured at baseline.

c At baseline.
executive dysfunction after OFPST
externalizing behaviors and less
at an older age exhibiting fewer
injury moderated the efficacy of
analyses confirmed our hypotheses
not reveal that injury severity
injury. However, our analyses did
were more apparent for children
benefits of OFPST on externalizing
1 to 24 months postinjury. Our
mild-to-severe TBI who were
from 5 randomized trials of OFPST
We examined individual-level data
age at injury, and injury severity did
not moderate the treatment effect on
parent-reported social competence.

DISCUSSION

We examined individual-level data
from 5 randomized trials of OFPST
for children with complicated
mild-to-severe TBI who were
1 to 24 months postinjury. Our
joint analyses revealed that the
benefits of OFPST on externalizing
and executive function behaviors
were more apparent for children
who began treatment longer after
injury. However, our analyses did
not reveal that injury severity
moderates treatment effect. Our
analyses confirmed our hypotheses
and previous findings that age at
injury moderated the efficacy of
OFPST, with children who are injured
at an older age exhibiting fewer
externalizing behaviors and less
executive dysfunction after OFPST
compared with similar children in
the control treatment. We did not
find evidence of moderation by age at injury for internalizing behaviors or social competence. Also
consistent with previous findings,
parent education (our proxy for SES)
moderated improvements in social competence. Taken together,
these findings shed important light
on the optimal application of family
problem-solving treatments within
the first 2 years after injury.

We found evidence that OFPST was
not as beneficial when implemented
in the early phase of recovery. This
finding is consistent with that in
animal models of TBI that reveal
that delaying the introduction of
enrichment, an analog for treatment,
was associated with greater
improvement than an immediate
introduction of enrichment.13
Additionally, the finding is consistent
with anecdotal parental reports that
an early initiation of the intervention
exacerbated family burden. Family
problem-solving training has been
used successfully with a number of
chronic pediatric medical conditions,31
including asthma32 and diabetes.33
However, TBI, unlike these other
diagnoses, causes profound acute
changes in attention,34 processing
speed,34 and self-regulation35 that
may impair children’s ability to
engage with their parents in the
problem-solving process soon after
diagnosis. Although we did not
find evidence that the drawbacks
of introducing OFPST soon after
injury were more pronounced after
severe TBI, the initial fatigue36
and concentration difficulties37
that occur after TBI likely reduce
a child’s ability to directly benefit
from treatment. With greater time
since injury, adolescents may learn to
employ the problem-solving process
and related metacognitive strategies
in their everyday lives. Additionally,
parents may view TBI-related
challenges as more persistent, rather
than transient, thus heightening
their engagement. OFPST differs
from some other problem-solving
approaches in its involvement of
both parents and the child with
brain injury, and as a consequence,
its efficacy may be more directly
a function of the child’s stage of
recovery and development than
treatment with the parents alone.

Consistent with the previous
individual studies, our meta-analysis
revealed that age at injury and SES
also moderated treatment efficacy.
However, the moderation effects
varied across outcomes such that
age at injury moderated effects
on externalizing behaviors and
executive dysfunction, whereas
parent education moderated effects
on social competence. Evidence
indicates that development of the
brain regions that subserve self-
regulation and problem-solving,
which are skills targeted by OFPST,
continues through adolescence and
early adulthood.38 Consequently,
OFPST may more closely align with the adolescent brain and social-behavioral development. Thus, OFPST’s emphasis on inhibition, self-regulation, and problem-solving may contribute to improvements in externalizing symptoms and executive function skills among older children and adolescents who are able to employ those skills in their day-to-day lives.

Interestingly, for younger children, the control condition was associated with significantly fewer externalizing symptoms and executive dysfunction at follow-up than OFPST, suggesting that problem-solving therapy involving a younger child with TBI is not an effective treatment. The developmental psychopathology literature suggests that parenting plays a critical role in the emergence of self-regulation in young children with parenting interventions contributing to enhanced self-regulation in children with a range of behavioral challenges, including those associated with pediatric TBI. OFPST, alternatively, may have increased parents’ awareness of problems that their young children were experiencing in the context of the limited direct benefit of the intervention on the children’s behavior.

Parents with less education reported better social competence among children receiving OFPST than among those receiving the control treatment. Social competence deficits were not a primary target of OFPST, although researchers in 2 trials incorporated core content regarding reading nonverbal communication and problem-solving in social situations, and the administrators of all OFPST programs discussed the social challenges that often accompany TBI. However, social challenges may be more salient for children of lower SES given that family income and education exert profound effects on children’s neurodevelopment, with parental responsiveness partly mediating this association. SES has also been linked to poorer problem-solving skills. Thus, OFPST may contribute to enhanced child social competence through improvements in parental responsiveness and problem-solving. Taken together, findings suggest that the characteristics of those who are most likely to benefit may vary depending on the treatment target and confirm previous research regarding potential benefits for older children and those of lower SES.

Among children who were older at the time of injury, effect sizes ranged from 0.60 (externalizing problems) to 0.66 (executive function behaviors). Effects of the intervention on social competence among less educated parents were large (0.98). Results suggest that OFPST has medium-sized effects on behavior problems among older children and those with a longer time since injury and more substantial effects on social competence among the subset with low levels of parental education.

Our newfound evidence regarding treatment timing was made possible via individual participant data meta-analysis, which offers statistical advantages over traditional meta-analysis, including more clinically relevant results. The joint analysis of individual patient data both advances our understanding of effective treatment strategies for pediatric TBI and helps propel the field toward individualized medicine. Although a single large prospective study may have been preferable, practical limitations of working with difficult-to-study populations precluded that approach. We hope that the current study can serve as an exemplar to encourage more widespread adoption of individual participant data meta-analysis for researching populations similar to survivors of pediatric TBI.
We favored an “opportunistic” approach to identifying studies that allowed for us to avoid potential analytical difficulties, including inconsistency in recruitment, data collection, and variable definitions, but raised the possibility of potential selection bias. That is, our results may be more representative of patients and care in the US Midwest or may be reflective of minor design choices consistently made by this group of investigators when compared with a random sample of studies. However, given the persistent difficulties of retrieving data from original study authors, we believe that the selection bias introduced is small and justified by expected advantages related to cost, practicality, and precision, especially because our literature search failed to reveal other studies of OFPST. Because all participants were <24 months postinjury at enrollment, we cannot draw conclusions regarding the relative efficacy of OFPST across longer time frames postinjury. Additionally, racial and ethnic diversity across studies was relatively limited, potentially reducing generalizability. Finally, all studies were largely conducted as part of a single research consortium, raising potential concerns regarding the ability of outside investigators to implement the treatment. However, 4 of the 5 studies were implemented at multiple sites with different site directors, in part mitigating concerns regarding reproducibility.

CONCLUSIONS

With these findings, we add to the limited literature on evidence-based treatments for behavioral challenges after pediatric TBI and inform the delivery of family-centered treatments. Results suggest that a later introduction of family-centered treatment is likely to be associated with greater improvements in externalizing problems and executive dysfunction; this is possibly due to a child’s greater capacity to participate in and directly benefit from treatment. Precision medicine is a concept that incorporates individual variability in genes, environments, and lifestyles to identify the optimal management approach for each individual. Current findings are used to inform a precision medicine approach for the delivery of OFPST after pediatric TBI by defining the optimal time after injury and the age of individuals who are most likely to benefit. Future research in which other factors that characterize the individuals who are most likely to benefit from treatment, such as genetic and environmental factors, are determined will be important. Overall, these findings can be used to inform the clinical delivery of OFPST and other family-centered treatments involving children.

ACKNOWLEDGMENTS

We acknowledge the contributions of Amy Cassedy, PhD, and Nori Minich, BS, to data cleaning and synthesis; Jennifer Taylor, BA, to regulatory oversight; and Aimee Miley, BA, BS, to the article preparation.

ABBREVIATIONS

BRIEF: Behavioral Rating Inventory of Executive Functions
CBCL: Child Behavior Checklist
GCS: Glasgow Coma Scale
GEC: Global Executive Composite
HCSBS: Home and Community Social Behavior Scale
OFPST: online family problem-solving treatment
SES: socioeconomic status
TBI: traumatic brain injury

REFERENCES

Accepted for publication Sep 5, 2018

Address correspondence to Shari L. Wade, PhD, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4009, Cincinnati, OH 45229-3039. E-mail: shari.wade@cchmc.org

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).

Copyright © 2018 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

FUNDING: Funded by grant 1R21HD089076-01 to Dr Wade from the National Institutes of Health. Funded by the National Institutes of Health (NIH).

POTENTIAL CONFLICT OF INTEREST: The authors have indicated they have no potential conflicts of interest to disclose.

16. Stewart LA, Parmar MK. Meta-analysis of the literature or of individual patient data: is there a difference? Lancet. 1993;341(8842):418–422

30. R Core Team. R [computer program]. Vienna, Austria: R Core Team; 2017. Available at: https://www.R-project.org/}

34. Catroppa C, Anderson VA, Morse SA, Haritou F, Rosenfeld JV. Children’s

47. Nevitt SJ, Marson AG, Davie B, Reynolds S, Williams L, Smith CT. Exploring changes over time and characteristics associated with data retrieval across individual participant data meta-analyses: systematic review. *BMJ.* 2017;357:j1390

Online Family Problem-solving Treatment for Pediatric Traumatic Brain Injury

Shari L. Wade, Eloise E. Kaizar, Megan Narad, Huaiyu Zang, Brad G. Kurowski, Keith Owen Yeates, H. Gerry Taylor and Nanhua Zhang

Pediatrics 2018;142;
DOI: 10.1542/peds.2018-0422 originally published online November 9, 2018;

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://pediatrics.aappublications.org/content/142/6/e20180422</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 47 articles, 4 of which you can access for free at: http://pediatrics.aappublications.org/content/142/6/e20180422#BIBL</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s): Head and Neck Injuries http://www.aappublications.org/cgi/collection/head_neck_injuries_sub Traumatic Brain Injury http://www.aappublications.org/cgi/collection/traumatic_brain_injury_sub</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.aappublications.org/site/misc/Permissions.xhtml</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://www.aappublications.org/site/misc/reprints.xhtml</td>
</tr>
</tbody>
</table>

American Academy of Pediatrics

DEDICATED TO THE HEALTH OF ALL CHILDREN®
Online Family Problem-solving Treatment for Pediatric Traumatic Brain Injury
Shari L. Wade, Eloise E. Kaizar, Megan Narad, Huaiyu Zang, Brad G. Kurowski, Keith Owen Yeates, H. Gerry Taylor and Nanhua Zhang

Pediatrics 2018;142;
DOI: 10.1542/peds.2018-0422 originally published online November 9, 2018;

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/142/6/e20180422