Acid-Suppressive Drug Use During Pregnancy and the Risk of Childhood Asthma: A Meta-analysis

Tianwen Lai, MD, PhD, a, b Mindan Wu, MD, a, b Juan Liu, MD, a, c Man Luo, MD, PhD, a Lulu He, MD, a Xiaohui Wang, MD, a Bin Wu, MD, b Songmin Ying, MD, PhD, b Zhihua Chen, PhD, b Wen Li, MD, PhD, b Huahao Shen, MD, PhD a, d

abstract

CONTEXT: The association between acid-suppressive drug exposure during pregnancy and childhood asthma has not been well established.

OBJECTIVE: To conduct a systematic review and meta-analysis on this association to provide further justification for the current studies.

DATA SOURCES: We searched PubMed, Medline, Embase, the Cochrane Database of Systematic Reviews, EBSCO Information Services, Web of Science, and Google Scholar from inception until June 2017.

STUDY SELECTION: Observational studies in which researchers assessed acid-suppressive drug use during pregnancy and the risk of childhood asthma were included.

DATA EXTRACTION: Of 556 screened articles, 8 population-based studies were included in the final analyses.

RESULTS: When all the studies were pooled, acid-suppressive drug use in pregnancy was associated with an increased risk of asthma in childhood (relative risk [RR] = 1.45; 95% confidence interval [CI] 1.35–1.56; I² = 0%; P<.00001). The overall risk of asthma in childhood increased among proton pump inhibitor users (RR = 1.34; 95% CI 1.18–1.52; I² = 46%; P<.00001) and histamine-2 receptor antagonist users (RR = 1.57; 95% CI 1.46–1.69; I² = 0%; P<.00001).

LIMITATIONS: None of the researchers in the studies in this meta-analysis adjusted for the full panel of known confounders in these associations.

CONCLUSIONS: The evidence suggests that prenatal, maternal, acid-suppressive drug use is associated with an increased risk of childhood asthma. This information may help clinicians and parents to use caution when deciding whether to take acid-suppressing drugs during pregnancy because of the risk of asthma in offspring.

Dr Lai conceptualized and designed the study, drafted the initial manuscript, and interpreted the data; Dr Wu conducted the initial analyses and drafted the initial manuscript; Drs Liu, Luo, and He conducted the initial analyses; Dr Wang conducted the initial analyses and reviewed the manuscript; Prof Wu conceptualized the study and interpreted the data; Prof Ying conceptualized and designed the study and supervised the analysis; Prof Chen conducted the meta-analyses, interpreted the data, and reviewed the manuscript; Prof Li conducted the meta-analyses and interpreted the data; Prof Shen conceptualized and designed the study, supervised the analysis, and interpreted the data; and all authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Asthma is a chronic and complex disease that is characterized by recurring expiratory dyspnea, chronic airway inflammation, airway hyperresponsiveness, and airway remodeling. It is estimated that ~300 million people worldwide have asthma, and the prevalence of asthma continues to increase. The propensity to develop asthma or allergy is at least partially established before birth because of the interplay between environmental exposures and genetic predisposition. Major efforts have recently focused on the identification of risk factors for the development of allergy, particularly in children.

Acid-suppressive drugs are considered effective and safe to use during pregnancy to treat gastroesophageal reflux disease (GERD), a common complication that is reported with up to 80% of pregnancies. In adults, acid-suppressive drugs may alleviate asthma in patients with GERD, but the drugs are also associated with allergic sensitization. Pali-Schöll and Jensen-Jarolim showed that the impairment of gastric function is a documented risk factor for sensitization against oral proteins and drugs. Schöll et al showed that antiacid treatment in pregnant mice could be responsible for the increasing number of sensitizations against food allergens in their offspring. Dehlink et al indicated that acid-suppressive drugs may interfere with the denaturation of food antigens in the stomach, making food proteins act like allergens and causing a T helper cell 2 cytokine dominance, which may result in subsequent sensitization of the immune system.

An increasing number of researchers in epidemiologic studies have now investigated the impact of prenatal exposure to acid-suppressive medications on the risk of childhood asthma but have gotten inconsistent results. Dehlink et al and Andersen et al observed that prenatal exposure to both proton pump inhibitors (PPIs) and histamine-2 receptor antagonists (H2RAs) was associated with an increased risk of asthma. In contrast, Cea Soriano et al observed no association between prenatal exposure to PPIs and asthma in childhood after adjusting for confounding variables. These studies were designed as retrospective cohorts or case controls. The risk of bias within studies was strong because of weaknesses in the study design, such as selection bias, confounding, exposure assessment, and outcome assessment. The limitations of each of the included articles are shown in Table 1. The confounders, such as maternal allergy or asthma, maternal smoking, and maternal antibiotic use, could be related to an increased risk of asthma in adults because of the inflammatory effects on the upper and lower airways caused by reflux material.

Asthma in the offspring could be due to GERD (eg, indication) rather than the treatment of GERD. Thus, GERD may be confounding the association of acid suppression in pregnancy and childhood asthma. Given the widespread use of gastric acid–suppressing medications during pregnancy, their role in the development of asthma and allergic disorders in the offspring raises a potential public health concern.

A comprehensive synthesis of the available primary studies is required to understand the emerging evidence. Bringing together all the relevant data can clarify the underlying role of acid-suppressive medications in the development of asthma and allergy, which would eventually provide the opportunity for initiating primary prevention interventions. To comprehensively evaluate the evidence relating to these issues, we conducted a systematic review and meta-analysis of the relevant epidemiologic literature and quantified whether the use of acid-suppressive drugs during pregnancy is associated with an increased risk of childhood asthma.

METHODS

Data Sources and Search Strategy

A systematic review of published studies and a meta-analysis of retrospective cohort studies was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. We conducted a search for journal studies published in English, which included all studies until June 2017, by using the medical databases PubMed, Medline, Embase, EBSCO Information Services, Web of Science, Google Scholar, and the Cochrane Database of Systematic Reviews. The following search terms were applied in the search for eligible studies: (“Proton pump inhibitor” or “H2 blockers” or “H2 receptor antagonist” or “acid-suppressive drugs”) and “child asthma” and “pregnancy.” To ensure a complete review of the available studies, we scanned the reference lists of eligible articles as well as the relevant systematic review articles returned in the search and examined the abstracts of relevant scientific meetings. We also made efforts to contact authors in cases in which relevant data were unclear.

Selection Criteria

We included case control studies, case-crossover studies, and cohort studies in which researchers investigated the association between the use of acid-suppressive drugs during pregnancy and the risk of childhood asthma, which reported an adjusted odds ratio (OR) or relative risk (RR) and the corresponding 95% confidence interval (CI). We only selected articles that were written in English and excluded studies with no available data for outcome measures.
Quality Assessment

Methodological quality was evaluated by using the Newcastle-Ottawa scale (NOS) for quality assessment for the included studies. In this study, we assigned scores of 0 to 3, 4 to 6, and 7 to 9 for low, moderate, and high quality of studies, respectively. A star system (a score range from 0 to 9) was developed for quality assessment according to the NOS.

Data Extraction

We independently evaluated all the studies that were retrieved from the databases and bibliographies and met the inclusion criteria described above. Titles and abstracts were independently reviewed by 2 reviewers (T. W. L. and M. D. W.) to determine their potential relevance. Any disagreements were resolved by consensus with a third reviewer when necessary. For each study, we extracted data by using a data extraction form that included author, year, study design, country, study period, sample size, and database.

Statistical Analysis

We used RRs and 95% CIs for the meta-analysis to analyze the association between the use of acid-suppressive drugs during pregnancy and the risk of childhood asthma. Heterogeneity across the studies was assessed by using the I² statistic. I² values of 25%, 50%, and 75% represent low, moderate, and high heterogeneity, respectively. When heterogeneity was found, we conducted sensitivity analyses by removing each study from the analysis to assess the changes in the I² values and determine which studies contributed most significantly to the heterogeneity.

Identification of Relevant Studies

A total of 556 studies were identified from searching the electronic database by using keywords and...
We summarized the confounders included in our systematic review and meta-analysis. The detailed steps of the study selection process are shown in Fig 1.

The main characteristics of the included studies are summarized in Table 2. Researchers in 7 studies evaluated the association between acid-suppressive drug use and the risk of childhood asthma, and researchers in 6 studies assessed the association between the use of PPIs or H2RAs and the risk of childhood asthma. Countries where the studies were conducted were as follows: Sweden (n = 2), the United Kingdom (n = 2), the Netherlands (n = 2), Israel (n = 1), and Denmark (n = 1). The confounders, such as maternal asthma and GERD, could be related to an increased risk of childhood asthma.

Maternal asthma is considered to be a main confounder in these studies. Only 1 study by Mulder et al showed that mothers without any asthma prescriptions before their own fifth birthday were selected. Researchers in 3 studies tried to assess maternal GERD. We summarized the confounders in the studies during the meta-analysis (Table 3). The methodological quality of the 8 studies was assessed according to the NOS (Table 4).

Overall Use of Acid-Suppressive Drugs During Pregnancy and the Risk of Childhood Asthma

Of the studies identified, 7 reported the overall use of acid-suppressive drugs. The analysis showed that the overall use of acid-suppressive drugs during pregnancy was associated with an increased risk of childhood asthma (RR = 1.31; 95% CI 1.15–1.49; P < .0001) by using a random-effects model. Statistical heterogeneity was observed (I2 = 84%; P < .0001; Fig 2). In a sensitivity analysis (Supplemental Fig 6), the total RR of the 7 studies was 1.24 (95% CI 1.18–1.30). The 95% CI of all the studies crosses 1.0, suggesting that these studies were of poor stability, and they require caution when discussing and drawing conclusions. We further assessed heterogeneity by using the sensitivity analyses and removing each study from the analysis to assess the changes in the I² values and determine which studies contributed most significantly to the heterogeneity. The number of patients in the study by Hak et al was lower compared with other studies, and Yitschak-Sade et al investigated the use of H2RAs during pregnancy was associated with an increased childhood asthma risk (RR = 1.34; 95% CI 1.18–1.52; P < .00001). There was some statistical heterogeneity (I² = 46%; P = .10; Fig 4). Compared with other studies, the number of patients in the study by Hak et al was lower. We found that excluding the study by Hak et al reduced the heterogeneity in all studies from the initial 46% to 38%.

Researchers in 5 studies assessed the use of H2RAs during pregnancy and the risk of childhood asthma. The data showed that the use of H2RAs during pregnancy was associated with an increased risk of asthma in the offspring (RR = 1.57; 95% CI 1.46–1.69; P < .00001). Statistical heterogeneity was not observed (I² = 0%; P = .48; Fig 5). Collectively, the data suggest that prenatal exposure to both PPIs and H2RAs was associated with an increased risk of asthma.

Publication Bias

We used Egger’s test and Begg’s test for publication bias. Funnel plots of the studies used to evaluate the outcomes (overall acid-suppressive drug use, PPIs, and H2RAs) appeared to be symmetrical by visual examination. The data suggested that...
<table>
<thead>
<tr>
<th>Source</th>
<th>No. Analyzed</th>
<th>Study Period</th>
<th>Age Range of Children, Follow-up in Years(^a)</th>
<th>Exposure Assessment</th>
<th>Asthma Assessment</th>
<th>Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dehlink et al(^1) (Sweden)</td>
<td>585716</td>
<td>1995–2004 2005–2006</td>
<td>>2 y</td>
<td>The trimester of exposure: first trimester (OR 1.38; 95% CI 1.22–1.57), later pregnancy (OR 1.34; 95% CI 1.11–1.63)</td>
<td>Hospitalized or received prescription for medication for asthma</td>
<td>The Swedish Hospital Discharge Register, The Swedish Prescribed Drug Register, and The Swedish Medical Birth Register</td>
</tr>
<tr>
<td>Andersen et al(^2) (Denmark)</td>
<td>197080</td>
<td>1996–2008 The maximum follow-up time was 14 y with a median follow-up of 6.8 y</td>
<td>Trimester of exposure: first trimester (HR 1.46; 95% CI 1.27–1.67), second and/or third trimester (HR 1.34; 95% CI 1.15–1.56), preconception and postpregnancy exposures</td>
<td>Asthma diagnosis or dispensations record for of antiasthmatic medication</td>
<td></td>
<td>Danish medical registries, The Aarhus University Prescription Database, and the Danish National Registry of Patients</td>
</tr>
<tr>
<td>Mulder et al(^3) (Netherlands)</td>
<td>33536</td>
<td>1985–2011 The maximum follow-up time was 8 y with a median follow-up of 4.9 y</td>
<td>Trimester of exposure: first and/or second trimester (HR 1.64; 95% CI 1.12–2.41); third trimester (HR 1.52; 95% CI 0.77–2.25)</td>
<td>>2 inhaled steroid prescriptions within 12 mo</td>
<td></td>
<td>The pregnancy IADB database</td>
</tr>
<tr>
<td>Källén et al(^4) (Sweden)</td>
<td>685015</td>
<td>1998–2007 2005–2009</td>
<td>2–6 y</td>
<td>During the second or third trimester (OR 1.60, 95% CI 1.40–1.76)</td>
<td>>5 prescription events for antiasthmatic drugs</td>
<td>The Swedish Medical Birth Register and The Swedish Prescribed Drug Register</td>
</tr>
<tr>
<td>Yitshak-Sade et al(^4) (Israel)</td>
<td>91428</td>
<td>1999–2008</td>
<td>3–13 y</td>
<td>Trimester of exposure: first trimester (RR 1.08; 95% CI 0.97–1.21), second trimester (RR 1.11; 95% CI 0.93–1.32), third trimester: (RR 0.99; 95% CI 0.82–1.20)</td>
<td>Hospitalization for asthma diagnosis</td>
<td>Clalit health services (health maintenance organization)</td>
</tr>
<tr>
<td>Cea Soriano et al(^8) (United Kingdom)</td>
<td>11010</td>
<td>1996–2010 Maximum of 6 y follow-up</td>
<td>Trimester of exposure (RR, 95% CI): Model A: first trimester (PPI: 1.16 [0.89–1.52], H(_2)RA: 1.16 [0.94–1.61]); second trimester (PPI: 1.39 [0.93–1.98], H(_2)RA: 1.77 [1.34–2.33]); third trimester (PPI: 1.04 [0.69–1.50], H(_2)RA: 1.39 [1.14–1.68]). Model E: first trimester (PPI: 1.07 [0.76–1.51], H(_2)RA: 1.15 [0.77–1.72]); second trimester (PPI: 1.11 [0.80–2.05], H(_2)RA: 1.75 [1.25–2.47]); third trimester (PPI: 0.89 [0.36–1.30], H(_2)RA: 1.20 [0.93–1.54])</td>
<td>According to general practitioner; recorded clinical asthma events</td>
<td>The health improvement network database(^c)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Follow-up is reported as the maximum or median number of years. \(^b\) Model A: first trimester (PPI: 1.16 [0.89–1.52], H\(_2\)RA: 1.16 [0.94–1.61]); second trimester (PPI: 1.39 [0.93–1.98], H\(_2\)RA: 1.77 [1.34–2.33]); third trimester (PPI: 1.04 [0.69–1.50], H\(_2\)RA: 1.39 [1.14–1.68]). Model E: first trimester (PPI: 1.07 [0.76–1.51], H\(_2\)RA: 1.15 [0.77–1.72]); second trimester (PPI: 1.11 [0.80–2.05], H\(_2\)RA: 1.75 [1.25–2.47]); third trimester (PPI: 0.89 [0.36–1.30], H\(_2\)RA: 1.20 [0.93–1.54]).
DISCUSSION

Our aim with this systematic review was to provide an overview of the literature describing associations between acid-suppressive drug use during pregnancy and the risk of childhood asthma. Our meta-analysis showed that prenatal exposure to acid-suppressive drugs, such as H2RAs and PPIs, is associated with an increased risk of childhood asthma. On the basis of this study, researchers in future studies examining the early origins of childhood asthma need to account for the impact of prenatal, maternal, acid-suppressive drug use.

Asthma is characterized by chronic bronchial inflammation, airway hyperresponsiveness, and reversible bronchial obstruction. Prenatal exposures, such as the use of antibiotics, paracetamol, folic acid, acid-suppressive drugs, and maternal smoking and/or passive smoking, are some of the speculated causes that contribute to asthma.

Although little is known about the use of acid-suppressive drugs and the risk of childhood asthma, researchers in animal and human studies proposed some hypotheses. Acid-suppressive drugs may interfere with the denaturation of food antigens in the stomach, making food proteins act like allergens and thereby causing allergic sensitization, which could lead to food-specific immunoglobulin-E induction and the development of T helper cell-2–biased hypersensitivities in pregnant women.9,10

There was no evidence of publication bias (P > .05; Supplemental Fig 7).

TABLE 2

<table>
<thead>
<tr>
<th>Source</th>
<th>No. Analyzed</th>
<th>Study Period</th>
<th>Age Range of Children, Follow-up in Years</th>
<th>Exposure Assessment</th>
<th>Asthma Assessment</th>
<th>Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hak et al16 (United Kingdom)</td>
<td>3748</td>
<td>1998–2010</td>
<td>Mean age at diagnosis of asthma 3.6 y</td>
<td>The trimester of exposure. H2RA: first trimester (HR 1.15; 95% CI 0.77–1.72), second trimester (HR 1.76; 95% CI 1.25–2.47), third trimester (HR 1.20; 95% CI 0.95–1.54); PPI: first trimester (HR 1.07; 95% CI 0.78–1.51), second trimester (HR 1.11; 95% CI 0.80–1.51), third trimester (HR 0.69; 95% CI 0.36–1.30)</td>
<td>Prescribed any asthma medications >3 times within 12 mo after the first diagnosis date</td>
<td>United Kingdom General Practitioners Research Database</td>
</tr>
<tr>
<td>Mulder et al17 (Netherlands)</td>
<td>12 530</td>
<td>1995–2011</td>
<td>≥5.5 y</td>
<td>After adjustment for maternal age at birth, prenatal exposure to acid-suppressive drugs. Statistically significantly increased the odds of toddler having asthma by 52% (adjusted OR, 1.52; 95% CI 1.11–2.09)</td>
<td>>2 prescriptions for asthma medications during follow-up</td>
<td>The pregnancy IADB database</td>
</tr>
</tbody>
</table>

IADB, InterAction Database; NA, not available.

1 The minimum age of children and minimum medication dispensing when defining asthma.

2 Model A: Cox proportional hazard model adjusted for the number of maternal primary care physician visits and referrals during the year before the last menstrual period date and year of delivery. Model E shows the Cox proportional hazard model adjusted for number of maternal primary care physician visits and referrals during the year before the last menstrual period date and year of delivery; maternal comorbidities (asthma, allergies, GERD, and peptic ulcer); maternal use of nonsteroidal anti-inflammatory drugs, antacids, antibiotics, and antihistamine medications during pregnancy; and sex of the infant.

3 Automated computer search, manual confirmation, and secondary validation by questionnaire.

Download from www.aappublications.org/news by guest on August 8, 2021
present a further challenge for researchers examining true associations. Background Because all the results in the included studies were based on the population register database, it is imperative to eliminate this confounding variable, which is not always easy to accomplish. Andersen et al.12 adjusted the maximum range of risk factors, and their results also showed an increased RR in childhood asthma. Källén et al.15 showed that the association still existed even after they adjusted for confounding factors by excluding women who used specified drug categories and antiasthmatic drugs. Moreover, researchers in 2 studies minimized the potential confounding factors by using the case-crossover method.17,18

Yitshak-Sade et al.14 showed that the main possible bias in a study of this kind is confounding by indication. This finding raises a question of the causality of the effect at study. They were not able to retrieve the exact indication for administering the PPIs or H₂RAs from their databases. However, these medications can be taken for a variety of reasons, which possibly explains why the propensity score method failed to distinguish between the exposed and unexposed subjects. In the study by Cea Soriano et al.18 different Cox regression models were used to adjust for various confounding factors, and 1 model was maternal comorbidities at any time before delivery (allergies, GERD, peptic ulcer; model C).

TABLE 3 The Details of Maternal Asthma and Other Factors in Included Studies

<table>
<thead>
<tr>
<th>Source</th>
<th>Maternal Asthma</th>
<th>Confounders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehlink et al.11</td>
<td>Among nonallergic mothers (n = 551,234), maternal acid-suppressive drug use remained a risk factor, with an OR of 1.43 for developing childhood allergic disease (95% CI 1.28–1.59). Analysis of allergic mothers (n = 34,482) revealed that acid-suppressive drug use had no significant effect on the development of childhood allergic disease (OR 1.25, 95% CI 0.84–1.87).</td>
<td>Year of birth, parity, maternal age, maternal smoking, and maternal BMI</td>
</tr>
<tr>
<td>Andersen et al.12</td>
<td>Maternal asthma was more frequent among PPI-exposed children than among unexposed children.</td>
<td>Year of birth, county, birth order, sex, gestational age, maternal age, maternal smoking, maternal asthma, delivery mode, and maternal use of antibiotics during pregnancy</td>
</tr>
<tr>
<td>Mulder et al.13</td>
<td>The presence of allergic diseases in the mother was twice as high among those exposed during pregnancy than those who were unexposed, but adjustment of the crude HR (1.51 [95% CI 1.25–1.82]) for allergic disease in the mother showed little effect (adjusted HR 1.46 [95% CI 1.21–1.76]).</td>
<td>Year of birth, sex of child, use of acid-suppressive drugs by child, maternal age at birth, maternal allergy, and maternal use of systemic antibiotics during pregnancy</td>
</tr>
<tr>
<td>Källén et al.15</td>
<td>Prescription of antiasthmatics during 2005–2011 did not identify all women with asthma during pregnancy. Among 11,300 women who had used antiasthmatics during pregnancy, 2,527 (23%) were not identified as asthmatic on the basis of prescriptions during 2005–2011.</td>
<td>Maternal age, year of birth, smoking, parity, BMI, and use of other drugs during pregnancy</td>
</tr>
<tr>
<td>Yitshak-Sade et al.14</td>
<td>The prevalence of maternal allergies did not differ substantially by exposure to H₂BBs or PPIs. Mothers in the group exposed to H₂BBs or PPIs were characterized by a higher proportion of asthma as compared with nonexposed mothers.</td>
<td>Maternal allergy or asthma, maternal age, maternal use of antibiotics, infertility treatment, prenatal care, gestational age at birth, cesarean delivery, birth wt, child sex, year of birth, child use of acid-suppressive drugs at <2 y old, metoclopramide, nonsteroidal anti-inflammatory drugs, and insulin</td>
</tr>
<tr>
<td>Cea Soriano et al.18</td>
<td>One hundred seventy-one (19.3%) women were identified as asthmatic. The adjusted HR for preexisting maternal asthma was 1.55 (95% CI 1.21–2.00), and for those diagnosed during pregnancy, it was 0.99 (95% CI 0.76–1.28).</td>
<td>Sex of child, maternal asthma, maternal comorbidities, maternal use of nonsteroidal anti-inflammatory drugs, antacids, antibiotics or antihistamine medications during pregnancy, maternal primary care physician visits before and during pregnancy</td>
</tr>
<tr>
<td>Hak et al.16</td>
<td>The presence of maternal asthma was similar among those exposed during pregnancy and those not exposed to acid-suppressive drugs.</td>
<td>Sex, maternal age at birth, birth order, and no. general practitioner visits during pregnancy. Paracetamol use, smoking status, presence of migraine, pre eclampsia, or the prescription of paracetamol or nonsteroidal anti-inflammatory drugs during pregnancy</td>
</tr>
<tr>
<td>Mulder et al.17</td>
<td>Mothers without any asthma prescriptions before their own fifth birthday were selected.</td>
<td>The age of the mother at birth, maternal asthma, sex of the child, sequence of birth, and use of acid-suppressive drugs by the child</td>
</tr>
</tbody>
</table>

H₂B, H₂ blockers.
The adjusted hazard ratios (HRs) for GERD that was preexisting and diagnosed during pregnancy were 1.07 (95% CI 0.79–1.44) and 1.17 (95% CI 0.92–1.48), respectively. It is a strength that researchers in these studies actually addressed this real issue and supported GERD disease as an alternative explanation to GERD treatment as a risk factor for childhood asthma. However, we don’t know; these types of studies can’t really answer that question unless we can find a population of women with GERD who did not take medication. Therefore, the association between acid-suppressive drug use in pregnancy and the risk of childhood asthma should be interpreted cautiously. The current results suggest that a cohort study in which all mothers are assessed for GERD by severity and drug use and all children are assessed for asthma by lung function testing or by a doctor is required.

Our meta-analysis has several strengths. First, it is the most comprehensive meta-analysis to date on the association between the use of acid-suppressive drugs during pregnancy and the risk of childhood asthma. Second, it examines the association in greater detail by stratifying by the type of acid-suppressive drug use. Overall acid-suppressive drug use included maternal use of any type of acid-suppressive drug (e.g., PPIs and H$_2$RAs) during pregnancy. The type, dose, frequency, and timing (first or second trimester) of the use of these medications were different across studies, and they may contribute to heterogeneity in overall acid-suppressive drug use. Thus, we stratified the analysis by subgroup (PPIs and H$_2$RAs) in the sensitivity analysis. After controlling for confounding factors, the association between acid-suppressive drug use and childhood asthma should be interpreted cautiously. Therefore, we don’t really know if these types of studies can really answer that question unless we can find a population of women with GERD who did not take medication.

<table>
<thead>
<tr>
<th>Methodological Quality Assessment According to the NOS</th>
<th>Representativeness of the Exposed Cohort</th>
<th>Selection of the Non-exposed Cohort</th>
<th>Ascertainment of Exposure</th>
<th>Demonstration That Outcome of Interest Was Not Present at Start of Study</th>
<th>Comparability of Cohorts on the Basis of the Design or Analysis</th>
<th>Assessment of Outcome</th>
<th>Follow-up Was Long Enough for Outcomes to Occur</th>
<th>Adequacy of Follow-up of Cohorts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andersen et al.12</td>
<td>1</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>Cea Soriano et al.18</td>
<td>1</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>Dehlink et al.11</td>
<td>1</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>Källén et al.15</td>
<td>1</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>Mulder et al.13</td>
<td>1</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>Yitshak-Sade et al.14</td>
<td>1</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>Hak et al.16</td>
<td>1</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>Mulder et al.17</td>
<td>1</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

Table 4

The adjusted hazard ratios (HRs) for GERD that was preexisting during pregnancy were 1.07 (95% CI 0.79–1.44) and 1.17 (95% CI 0.92–1.48), respectively.
heterogeneity was not observed in the subgroup analyses. Third, we included analytical epidemiologic studies: cohort, case control, and cross-sectional studies, which included a large number of studies and participants. Fourth, there was no publication bias in this study, which was assessed for by using Egger’s test and Begg’s test. Fifth, a sensitivity analysis was conducted, and it confirmed the robustness of our results. It minimized the recall bias and selection bias to the fullest extent. Even if adjustments for confounding factors have been made in the analysis, residual confounding remains a potentially serious problem in observational research. Residual confounding arises when a confounding factor cannot be measured with sufficient precision, which often occurs in epidemiologic studies. The main assessments in a sensitivity analysis include changing the inclusion criteria (especially in controversial studies), excluding low-quality studies, and using different statistical methods and/or models to analyze the same data. If the results remain unchanged, this indicates that the sensitivity is low, and the results are robust and...
trustworthy. However, if the results changed or opposite conclusions can be drawn, this indicates that the sensitivity is high, and the robustness of the results is relatively low. These results should be interpreted, and conclusions should be made, with caution.

Our meta-analysis also had some limitations. First, most of the studies in our meta-analysis were observational studies. As discussed above, observational studies may reduce the quality of the meta-analysis and are considered to have greater potential for bias. To compensate for this limitation, we conducted subgroup analysis according to the type of agent (PPIs or H2RAs). Observational studies have limitations inherent to their design, and variant confounders include maternal characteristics, genetic predisposition for asthma, and other comorbid conditions that might increase a child’s risk of asthma. The type and dose of these medications were different across studies and may contribute to heterogeneity in overall acid-suppressive drug use. Confounding is the most important threat to the validity of the results from cohort studies. In the sensitivity analysis of the subgroups (PPIs and H2RAs), the confounding factor (type of acid-suppressive drug) was controlled, and heterogeneity was not observed in the subgroup analyses. Second, we could not evaluate individual data on dose-response relationships that may have affected gastric acid production because these data were not available in each study.

CONCLUSIONS
In this study, we show that prenatal, maternal, acid-suppressive drug use plays a negative role in the development of asthma in offspring. Clinicians and parents need to exercise caution when deciding whether to take acid-suppressing drugs during pregnancy because of the risk of asthma in offspring.

ABBREVIATIONS
CI: confidence interval
GERD: gastroesophageal reflux disease
H2RA: histamine-2 receptor antagonist
HR: hazard ratio
NOS: Newcastle-Ottawa scale
OR: odds ratio
PPI: proton pump inhibitor
RR: relative risk

FIGURE 5
Forest plot of studies in which researchers investigated the association between maternal use of PPIs during pregnancy and the risk of asthma in the offspring. df, degree of freedom; M-H, Mantel Haenszel.
REFERENCES

Acid-Suppressive Drug Use During Pregnancy and the Risk of Childhood Asthma: A Meta-analysis
Tianwen Lai, Mindan Wu, Juan Liu, Man Luo, Lulu He, Xiaohui Wang, Bin Wu, Songmin Ying, Zhihua Chen, Wen Li and Huahao Shen
Pediatrics 2018;141;
DOI: 10.1542/peds.2017-0889 originally published online January 11, 2018;

Updated Information & Services	including high resolution figures, can be found at: http://pediatrics.aappublications.org/content/141/2/e20170889
References	This article cites 26 articles, 5 of which you can access for free at: http://pediatrics.aappublications.org/content/141/2/e20170889#BIBL
Subspecialty Collections	This article, along with others on similar topics, appears in the following collection(s): Pulmonology (http://www.aappublications.org/cgi/collection/pulmonology_sub), Asthma (http://www.aappublications.org/cgi/collection/asthma_subtopic), Child Care (http://www.aappublications.org/cgi/collection/child_care_sub)
Permissions & Licensing	Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.aappublications.org/site/misc/Permissions.xhtml
Reprints	Information about ordering reprints can be found online: http://www.aappublications.org/site/misc/reprints.xhtml
Acid-Suppressive Drug Use During Pregnancy and the Risk of Childhood Asthma: A Meta-analysis

Tianwen Lai, Mindan Wu, Juan Liu, Man Luo, Lulu He, Xiaohui Wang, Bin Wu, Songmin Ying, Zhihua Chen, Wen Li and Huahao Shen

Pediatrics 2018;141;
DOI: 10.1542/peds.2017-0889 originally published online January 11, 2018;

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/141/2/e20170889

Data Supplement at:
http://pediatrics.aappublications.org/content/suppl/2018/01/09/peds.2017-0889.DCSupplemental