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Father Loss and Child Telomere Length
Colter Mitchell, PhD, a Sara McLanahan, PhD, b Lisa Schneper, PhD, b Irv Garfinkel, PhD, c  
Jeanne Brooks-Gunn, PhD, c Daniel Notterman, MD, FAAPb

abstractBACKGROUND AND OBJECTIVES: Father loss during childhood has negative health and behavioral 
consequences, but the biological consequences are unknown. Our goal was to examine how 
father loss (because of separation and/or divorce, death, or incarceration) is associated 
with cellular function as estimated by telomere length.
METHODS: Data come from the 9-year follow-up of the Fragile Families and Child Wellbeing 
Study, a birth cohort study of children in 20 large American cities (N = 2420). Principal 
measures are as follows: salivary telomere length (sTL), mother reports of father loss, and 
polymorphisms in genes related to serotonergic and dopaminergic signaling.
RESULTS: At 9 years of age, children with father loss have significantly shorter telomeres (14% 
reduction). Paternal death has the largest association (16%), followed by incarceration 
(10%), and separation and/or divorce (6%). Changes in income partially mediate these 
associations (95% mediation for separation and/or divorce, 30% for incarceration, and 25% 
for death). Effects are 40% greater for boys and 90% greater for children with the most 
reactive alleles of the serotonin transporter genes when compared with those with the least 
reactive alleles. No differences were found by age at father loss or a child’s race/ethnicity.
CONCLUSIONS: Father loss has a significant association with children’s sTL, with the death of 
a father showing the largest effect. Income loss explains most of the association between 
child sTL and separation and/or divorce but much less of the association with incarceration 
or death. This underscores the important role of fathers in the care and development of 
children and supplements evidence of the strong negative effects of parental incarceration.
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WhAT’S KNOWN ON ThIS SUbjECT: Telomeres are 
the protective end caps of chromosomes. They 
shorten with age and are like a biological clock. 
Chronic stress is associated with accelerated 
telomere shortening, adverse health outcomes, and 
possibly more rapid biological aging.

WhAT ThIS STUDy ADDS: Separation from a father 
by death, incarceration, or parental separation and/
or divorce is associated with shorter telomeres 
in his children. Shortening is partly mediated by 
income loss, which is greater in children whose 
fathers die (in boys) and among children with alleles 
that enhance stress sensitivity.
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The loss of a father is widely known 
to impair a child’s physical and 
psychological functioning.1 – 11 
Although the link between father loss 
and poor health is well documented, 
much less is known about the 
biological factors that underlie 
the association. A recent line of 
research suggests that telomere 
length (TL)7,  12 – 22 may be a useful 
tool for helping us understand the 
biological processes that underlie the 
link between father loss and child 
health.14, 19,  23,  24

Telomeres are repetitive DNA 
sequences (TTAGGG repeats) that are 
located at the ends of chromosomes. 
In most mature somatic cells 
(excluding stem cells, germ cells, 
and many types of cancer cells), TL 
decreases progressively with each 
cell division. When telomeres are 
sufficiently short, the cell enters a 
state of replicative senescence and 
stops dividing. This process means 
that for most people, TL decreases 
with age.25 Thus, the telomere has 
been referred to as a “mitotic  
clock, ” 26 – 28 and TL has been construed 
as a measure of biological age. 
Consistent with these considerations, 
TL has been shown to be associated 
with a wide range of diseases and 
health morbidities in adults12,  22,  29 – 39  
and children22,  40, 41 and recently has 
become a popular biomarker for 
stress and accelerated biological 
aging.25,  41

Research also documents a negative 
association between TL in  
adulthood and a wide range of 
adverse environmental inputs and 
morbidities, including smoking, 39,  42 
mental illness, 35,  43, 44 stress, 17,  20,  29,  35, 45,  46  
obesity, 23,  47,  48 intense caregiving, 49 
poor sleep quality, 50 and  
poverty.14,  18,  19, 23,  51,  52 For 
children, findings have revealed 
associations between shorter TL 
and maltreatment, poverty, and 
maternal depression.7,  15, 21,  22,  52 – 54 
Mitchell et al7 recently documented 
a link between family instability in 
early childhood and shorter TL, but 

they did not distinguish among types 
of loss. In sum, although authors of 
past studies have not established 
a causal effect (or mechanistic 
role) of father loss on TL attrition, 
there is ample evidence that TL is 
a reliable biomarker of stress that 
may manifest long before health 
consequences are discernable, 
especially in children. Thus, using TL 
as a marker for potentially harmful 
stress can provide us with a more 
time-sensitive and graded predictor 
of a child’s long-term health and 
wellbeing than current disease status 
or mortality.

This article uses recently assayed 
(in DNA extracted from saliva) TL 
data from the Fragile Families and 
Child Wellbeing Study (FFCWS) to 
examine the association between 
father loss and children’s TL. We 
examine whether the type of loss 
(death, separation and/or divorce, 
or incarceration) and the timing of 
loss (early childhood and middle 
childhood) matter. We also examine 
whether associations are mediated 
by income changes and moderated by 
sex, race/ethnicity, and gene variants 
in the serotonergic and dopaminergic 
pathways).

METhODS

Sample

FFCWS is based on a stratified, 
multistage probability sample of 
children who were born in large US 
cities between 1998 and 2000, with 
an oversample of children born to 
unmarried parents.55 Because of 
the large oversample of nonmarital 
births and the urban nature of the 
sample, the data contain a large 
number of low-income families and a 
wide range of family types. Baseline 
interviews with mothers and fathers 
were conducted within 48 hours of 
their children’s birth, and subsequent 
interviews were conducted when the 
children were 1, 3, 5, and 9 years old. 
Salivary DNA samples were taken 

at the age of 9 by using the Oragene 
DNA sample collection kit (DNA 
Genotek Inc, Ottawa, ON).

We used the following 2 analytic 
samples for this study: (1) all 
children for whom we have salivary 
telomere length (sTL) data and 
who have had some contact with 
their biological fathers since birth 
(n = 2437) and (2) a subsample of 
children whose parents were living 
together (married or cohabiting) at 
the time of their birth (n = 1270). 
The first sample is used to study 
associations between sTL and loss 
in the form of the fathers’ death 
and incarceration, and the second 
subsample is used to study the 
association between sTL and parents’ 
separation and/or divorce (Table 1).  
Sample 1 is used to examine the 
effect of any father loss.

Telomere Measurement

TL was measured by using a 
quantitative real-time polymerase 
chain reaction (PCR) assay that 
incorporates an oligomer standard 
to permit the measurement of 
absolute TL (in kilobase [kb] per 
chromosome).7,  27,  56 To determine 
absolute TL, an 84-mer oligomer 
incorporating the sequence TTAGGG 
was used to construct a standard 
curve. A separate standard curve for 
a single-copy gene incorporates a 
79-mer oligomer that represents the 
reference gene 36B4. This enables 
the calculation of total TL in a 
diploid genome, whereas the 36B4 
product gives the number of diploid 
genomes. TL per chromosome is 
given by dividing TL per genome 
by 92 (the number of telomeres 
per diploid genome). Samples were 
measured in triplicate, and the 
results were averaged. Distribution 
of samples in the 96-well plates 
was randomized, and each plate 
contained repeats from previous 
runs to detect and limit potential 
batch effects. To mitigate batch 
effects, reference DNA from a cell 
line with a relatively short telomere 
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(3C167b)57 and a fibroblast cell 
line after stable integration of the 
hTERT gene (cell line NHFpreT)58 
were included in each plate (both 
cell lines were a gift from Dr 
Yuanjun Zhao of Pennsylvania 
State University). In our laboratory, 
3C167b has a mean TL of 3.1 kb, 
whereas NHFpreT has a mean TL 
of 16.8 kb. Reference DNA was 
harvested at a single time, aliquoted, 
and frozen. TL was normalized 
by this reference to ensure plate-
to-plate consistency. A replicate 
sample (DNA from volunteers) was 
included in triplicate in all plates, 
and the results of this measurement 
were used to compute an interrun 
coefficient of variation, which was 
<11% across all runs. Outliers were 
dealt with by trimming 1% off both 
tails of the sample and by using a 
natural log transformation.7,  59 The 
log transformation also corrected 
for the positive skew of the data. 
However, using the raw sTL 
measurement does not substantively 
change the results.

In this study, we examined the link 
between sTL and father loss. We 
have previously reported that saliva 
and peripheral blood mononuclear 
cell (PBMC) DNA were significantly 
correlated in the same individual  
(r = 0.72, P < .002), but that TL 
measured in PBMC was significantly 
shorter in adult volunteers (6.5 kb ±  
1.8 SD, saliva versus 4.2 kb ± 1.2 
SD, PBMC P < .001).7 Daniali et al60 
also found a significant correlation 
between leukocyte TL and TL in 
several other tissues (they did not 
study sTL). Notably, differences 
between TL in various tissues was 
stable over time.60 In addition, Theall 
et al21 reported that in children 4 to 
14 years old, there was a significant 
link between neighborhood disorder 
and sTL. Thus, there is good reason 
to conclude that sTL is a feasible 
source of DNA for TL measurement, 
although the exact TL values 

from different tissues may not be 
congruent.61

Genetic Measures

We examined several genetic variants 
that have been shown to moderate 
the association between a child’s 
social environment and sTL. Gene 
variants that may affect function of 
the dopaminergic system include the 
following: the Taq1a polymorphism 
of the dopamine receptor gene 
(DRD2, 11q23, rs1800497); the 
Val154Met polymorphism of the 
catechol-O-methyltransferase gene 
(COMT, 22q11.21, rs4680); the 
48bp VNTR in the third exon of the 

dopamine receptor 4 gene (DRD4, 
11p15.5); and 2 variants of the 
serotonin transporter gene (5-HTT, 
SLC6A, 17q11.2), 5-HTTLPR and 
STin2. The genotypes listed in Table 
2 were obtained by PCR followed 
by gel or capillary electrophoresis 
or by real-time PCR, as previously 
described.7 Similar to our previous 
publications, 7,  62 for the genetic 
measures, we summed the alleles 
that have been coded as “sensitizing” 
or “reactive” in the literature7,  63 – 73 
(0, 1, or 2 for each individual). This 
produced a dopamine pathway 
genetic score and a serotonin 
transporter (5-HTT) genetic score. 

3

TAbLE 1  Descriptive Statistics of Dependent and Independent Variables for the Analytic Sample  
(N = 2420)

Mean SD Minimum Maximum

Dependent Variables 
 Child’s TL 8.08 2.7 3.2 19.7
Child’s TL (ln, trimmed) 2.03 0.4 1.25 2.9
Independent variables
 Father loss, with ages of child at loss
  No father loss 0.48 — 0 1
  Loss at age 0–1 0.19 — 0 1
  Loss at age 1–3 0.13 — 0 1
  Loss at age 3–5 0.10 — 0 1
  Loss at age 5–9 0.10 — 0 1
  Incarceration at age 0–5 0.09 — 0 1
  Incarceration at age 5–9 0.11 — 0 1
  Death 0.03 — 0 1
Mediator variables
 Change in income (after loss − before loss), % 5.2 120.3 −100 727
 Change in social support 0.1 0.2 −3 3
Moderators
 Race
  African American 0.49 — 0 1
  White 0.21 — 0 1
  Hispanic 0.27 — 0 1
  Other 0.03 — 0 1
 Child is female 0.48 — 0 1
Control variables (baseline)
 Ln (household income) 9.89 1.10 0 11.8
 Social support 2.63 0.5 0 3
 Mother’s age 25.02 5.94 14 47
 Mother’s education 12.01 — — —
 Child is low birth weight (<2.5 kg) 0.09 — 0 1
 Child is firstborn 0.38 — 0 1
 Mother lives with child’s father 0.61 — 0 1
 Mother discussed abortion 0.37 — 0 1
 Mother or father ever depressed 0.49 — 0 1
 Mother or father ever had an alcohol problem 0.48 — 0 1
 Mother or father ever incarcerated 0.45 — 0 1
 Mother lived with both parents at 15 0.43 — 0 1
 Mother’s report of relationship quality 11.26 4.4 4 16
 Mother’s report of overall health 2.89 0.94 1 4

ln, natural logarithm.
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For the sake of this comparison, we 
divided the samples into terciles of 
genetic score, with the highest tercile 
being the one in which we expect to 
see the largest effect of father loss.

Father Loss

At each wave of data collection, 
each mother was asked whether her 
child’s biological father was living 
with the child and, if not, the reason 
for his absence. These questions 
were used to measure losses because 
of separation, divorce, and death. 
Parents were also asked a series of 
questions about whether the father 
had been incarcerated since the 
previous interview wave. We coded 
fathers as having been incarcerated if 
either parent reported such an event. 
For a small subset of cases, reports 
of a father’s death and incarceration 
came from responses to other 
questions or information provided by 
interviewers.

 Table 1 shows distributions for the 
FFCWS variables that were used in 
the analyses. Approximately half 
of the children who were living 
with their biological fathers at the 
time of their birth experienced a 
divorce or separation by age 9. 
Generally speaking, losses were 
most common during the first 
year of a child’s life (19%). Losses 
because of incarceration were 
evenly distributed between early 
and middle childhood. We could not 
separate death by age because of the 
small sample size.

Changes in Income

Percent income change was measured 
by taking the difference in family 
income during the period before 
and after father loss and dividing it 
by family income during the period 
before the loss. Income was adjusted 
for inflation and household size and 
was averaged over the number of 
years since it was last measured (ie, 
average change in income). Over the 
entire sample, there was little change 

in income across waves; however, 
all types of father loss (on average) 
resulted in declines in income: 
18% for any father loss, 12% for 
separation and/or divorce, 19% for 
incarceration, and 35% for death.

Controls

FFCWS data include a rich set of 
variables that allowed us to control 
for many family and individual 
characteristics that are likely to 
affect both father loss and child sTL 
(Table 1). Each of these variables is 
measured at the baseline interview 
or retrospectively at the 1-year 
interview. Although our approach 
does not eliminate the possibility 
that an unmeasured (or at least an 
unaccounted for) characteristic 
is responsible for the association 
between father loss and child sTL, 
the rich set of controls gives us more 
confidence in our estimates. Included 
in the FFCWS data are the following: 
self-reported race/ethnicity; 
mother’s age and education at 
baseline; household income at 
baseline; child’s sex, birth weight, 
and birth order; whether parents 
discussed an abortion; parents’ 
relationship at birth; parental history 
of depression at baseline; parental 
history of an alcohol problem at 
baseline; parental incarceration 

history; domestic violence during the 
pregnancy; mother’s self-reported 
health; and mother’s family structure 
at age 15.

Analytic Technique

We used ordinary least squares 
regression in which the log 
transformation of sTL is regressed 
onto our explanatory variables (ie, 
father loss, controls, and mediating 
variables) in a series of models. We 
first modeled an overall estimate of 
father loss, types of father loss, and 
age-specific father loss and adjusted 
for controls (Table 3). Next, we added 
income change to the model to test 
for mediation effects (Table 4).  
The most widely cited mediator of 
father loss is income change. 74 We 
calculated mediation (0%–100%) by 
comparing the change in the effect of 
father loss between the models with 
and without the income variable. 
Finally, we examined moderation 
by regressing sTL on controls and 
any father loss stratified by sex, race 
(African American, white, Hispanic), 
and serotonergic and dopaminergic 
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TAbLE 2  Distribution of Genotypes for the 
Serotonin Transporter Gene (5-HTT) 
and Dopaminergic Pathway (N = 2420)

Gene or 
Locus

Variant

5-HTTLPR LL LS SS
42% 42% 16%

STin2 10/10 10/12 12/12
10% 40% 50%

DRD2 CC CT TT
45% 42% 13%

COMT Val/Val Val/Met Met/Met
38% 48% 14%

DRD4 4R/4R 4R/7R 7R/7R
55% 37% 8%

Less than 2% of the sample had rare genotypes not re-
presented in Table 2. 5-HTTLPR, seratonin-transporter-linked 
polymorphic region; COMT, catechol-O-methyltransferase; 
DRD2, dopamine receptor D2; DRD4, dopamine receptor 
D4; STin2, a variable number of tandem repeats in intron 
2 of the seratonin transporter.

TAbLE 3  Percent Difference Child TL at Age 9 
Associated With Types of Father Loss 
(N = 2420)

Type of  
Father Loss

M1 M2a M3 M4

Any −14* 
(.006)

Separation 
and/or 
divorce

−6* 
(.03)

Incarceration −10* 
(.01)

Death −16** 
(.008)

All analyses were controlled for race/ethnicity; mother’s 
age and education at baseline; household income at 
baseline; child’s sex, birth weight, and birth order; report 
of whether parents discussed an abortion; parental 
report of how their relationship was going before the 
child’s birth; parental history of depression at baseline; 
parental history of an alcohol problem at baseline; 
parental incarceration history; if there was any domestic 
violence during the pregnancy; mother’s self-report of 
health; and if the mother lived with her parents at age 15.
a A separate analysis comparing those children who 
experienced a divorce or separation with those who were 
born in a 2-parent household but stayed together found a 
slightly higher reduction of 7%.
* P < .05.
** P < .01, 2-tailed (P values in parentheses).

 by guest on June 19, 2019www.aappublications.org/newsDownloaded from 



PEDIATRICS Volume 140, number 2, August 2017

pathway genes. We used a χ2 test 
to determine the equivalency of 
coefficients across subgroups.

RESULTS

 Table 3 provides estimates for the 
association between overall father 
loss and natural log–transformed child 
sTL. Supplemental Table 6 provides 
separate estimates for each type of 
loss at different ages in childhood. 
According to model 1 in Table 3, any 
father loss between birth and age 9 is 
associated with a −0.15 reduction in 
the natural log sTL or approximately a 
(1-exp(−0.15)), 14% reduction in sTL. 
The coefficients are higher for losses 
at younger ages, but the difference is 
not statistically significant.

The associations between different 
types of father loss and natural 
log sTL are reported in models 2 
to 4. Model 2 shows that parents’ 
separation and/or divorce is 
associated with a TL reduction of 
∼6%. Again, although the size of 
the coefficients is larger for early 
breakups, the difference is not 
significant. Estimates based on 
comparisons with children who 
were born to 2-parent households 
(instead of children who did not 
experience a divorce or separation) 
are similar to the findings shown in 
 Table 3 (see Supplemental Table 6). 
Incarceration has an equally strong 
association with sTL (∼10% shorter), 
and the effect is consistent across age 
groups. Finally, death is associated 

with a 16% reduction in sTL. Figure 
1 displays the TL by different loss 
types, all of which provide strong 
support for the argument that father 
loss is associated with shorter sTL 
among children.

Mediation Analyses

There are multiple reasons why 
father loss might be a major stressor 
for a child. Table 4 presents income 
mediation for each type of father loss 
and reports estimates from 2 models. 
The first model is in the left column 
for each loss type and repeats the 
estimate reported in Table 3. The 
second model shows the estimate 
controlling for income change 
(from the wave of data collection 
before the loss to the wave after the 
loss). Row 2 shows the association 
between income change and child 
sTL. Row 3 (column 2) shows income 
mediation as a percent change in the 
original father loss effect. Decline in 
income accounts for 95% of the child 
telomere decrease after separation or 
divorce, but it only accounts for 53%, 
30%, and 19% of the decreases after 
any loss, incarceration, and death, 
respectively.

Moderation Analysis

Our final set of analyses focuses on 
potential moderators of the effect 
of father loss. Here, we included 
standard moderators (ie, a child’s sex 
and race/ethnicity) as well as a novel 
moderator (the genotype of the child 
with respect to specific variants in 
the serotonergic and dopaminergic 
pathways). Although boys and 
girls should have similar levels of 
exposure to father loss, there is 
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TAbLE 4  Mediation Analysis of Income on the Association Between Child TL at Age 9 and Father Loss, Exit, Incarceration, and Death (N = 2420)

Any Loss Separation and/or Divorce Incarceration Death

Father loss (% difference in TL) −14** (.008) −7* (.02) −6* (.05) −0 (.75) −10* (.01) −7* (.03) −16** (.005) −12** (.007)
Change in income (% difference in TL) — 3* (.02) — 3* (.02) — 3* (.02) — 3* (.02)
Mediation (%) — 53 — 95 — 30 — 25

All analyses control for race/ethnicity; mother’s age and education at baseline; household income at baseline; child’s sex, birth weight, and birth order; report of whether parents 
discussed an abortion; parental report of how their relationship was going before the child’s birth; parental history of depression at baseline; parental history of an alcohol problem 
at baseline; parental incarceration history; if there was any domestic violence during the pregnancy; mother’s self-report of health; and if the mother lived with her parents at age 15.
* P < .05.
** P < .01, 2-tailed (P values in parentheses).

FIGURE 1
Mean age 9 sTL for children by father loss type (N = 2420, error bars = 95% confidence interval). 
All analyses were controlled for race/ethnicity; mother’s age and education at baseline; household 
income at baseline; child’s sex, birth weight, and birth order; report of whether parents discussed 
an abortion; parental report of how their relationship was going before the child’s birth; parental 
history of depression at baseline; parental history of an alcohol problem at baseline; parental 
incarceration history; if there was any domestic violence during the pregnancy; mother’s self-report 
of health; and if the mother lived with her parents at age 15.
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some evidence that boys are more 
negatively affected than girls.2,  3,  75 
There is also some evidence that the 
association between family instability 
and child health and wellbeing differs 
by race/ethnicity, 76, 77 although 
findings are inconsistent with respect 
to which group suffers more.78

 Table 5 shows the effect of general 
father loss on sTL by different 
moderators over 2 developmental 
periods. With respect to sex, there 
is some evidence that boys respond 
more negatively than girls to father 
loss. The difference appears to be 
primarily because of a strong effect 

on boys who lose their fathers before 
age 5. Interestingly, we found no 
significant moderation by race/
ethnicity. Finally, there is strong 
support that the variants associated 
with the serotonin transporter (but 
not the dopaminergic) pathway 
moderate the association between 
father loss and sTL. This finding fits 
with previous work, which suggests 
that the serotonergic pathway has 
a more direct effect on TL than the 
dopaminergic pathway, 7 mostly 
likely through the stress-physiology 
pathway. Figure 2 shows the 
moderation of father loss by sex and 
serotonin transporter (5-HTT) score.

DISCUSSION

This study uses data from a large 
birth cohort study to examine the 
association between father loss and 
children’s sTL and to determine 
if the association is mediated by 
income loss and/or moderated by 
the type of loss, a child’s sex, race/
ethnicity, age at exposure, and 
genetic characteristics. Consistent 
with previous studies, we found that 
father loss is associated with shorter 
sTL in children. The association is 
robust across all types of loss and 
by a child’s sex, race/ethnicity, and 
age at exposure. We also found that 
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TAbLE 5  Moderation Analysis of the Association of Any Father Loss and Child TL at Age 9 by Sex, Race/Ethnicity, and Serotonergic and Dopaminergic 
Pathway Genes of Child (N = 2420)

Sex Race Serotonergic Pathway 
(Terciles)

Dopaminergic Pathway (Terciles)

Boy Girl African 
American

White Hispanic First Second Third First Second Third

Any loss (% change in TL) −16* 
(.03)

−12a (.06) −13* 
(.04)

−16** 
(.008)

−14* 
(.02)

−10 
(.15)

−14* 
(.04)

−17**, a 
(.006)

−15* 
(.01)

−14* 
(.02)

−15* (.01)

Any loss 0–5 (% change in TL) −17* 
(.04)

−13* (.03) −14* 
(.01)

−18** 
(.005)

−15* 
(.01)

−8 
(.21)

−16 
(.17)

−22**, a 
(.009)

−13* 
(.03)

−16* 
(.02)

−18* (.01)

Any loss 5–9 (% change in TL) −12 (.12) −14* (.05) −17** 
(.01)

−12 (.11) −14* 
(.03)

−10 
(.24)

−12 
(.20)

−16 
(.16)

−16* 
(.03)

−10* 
(.05)

−14* (.04)

Each model is run within 1 group (ie, boys or girls who were either African American, white, or Hispanic). All analyses were controlled for race/ethnicity; mother’s age and education 
at baseline; household income at baseline; child’s sex, birth weight, and birth order; report of whether parents discussed an abortion; parental report of how their relationship was 
going before the child’s birth; parental history of depression at baseline; parental history of an alcohol problem at baseline; parental incarceration history; if there was any domestic 
violence during the pregnancy; mother’s self-report of health; and if the mother lived with her parents at age 15. For the genetic measures, we took the alleles that have been coded as 
“sensitizing” or “reactive” (0, 1, or 2 for each) and summed them. We divided the samples into terciles of genetic sensitization, with the highest tercile being the one in which we expect 
to be the most sensitizing.
a Indicates that the effects are significantly different between groups (eg, boys versus girls) by using a χ2 test of equality, P < .05.
* P < .05.
** P < .01, 2-tailed (P values in parentheses).

FIGURE 2
Effect of father loss in percent shorter age 9 sTL by sex and serotonin transporter (5-HTT) genetic 
score (N = 2420, error bars = 95% confidence interval). All analyses were controlled for race/
ethnicity; mother’s age and education at baseline; household income at baseline; child’s sex, birth 
weight, and birth order; report of whether parents discussed an abortion; parental report of how 
their relationship was going before the child’s birth; parental history of depression at baseline; 
parental history of an alcohol problem at baseline; parental incarceration history; if there was any 
domestic violence during the pregnancy; mother’s self-report of health; and if the mother lived with 
her parents at age 15. For the serotonin transporter (5-HTT) genetic score, we summed the alleles 
that have been coded as “sensitizing” or “reactive” based on the literature (0, 1, or 2 for each 
individual). We divided the samples into terciles of genetic sensitization, with the highest tercile 
being the one in which we expect to be the most sensitizing.
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the association is more pronounced 
among boys than girls and among 
children with the most reactive 
alleles of the serotonin transporter 
system. Two findings stand out for 
being inconsistent with previous 
research. First, previous research has 
found that the death of a father is less 
harmful for children than parents’ 
separation or divorce, 2,  10,  79 whereas 
we found that a father’s death is 
more strongly associated with child 
sTL. This finding may be due to 
something about our sample, which 
is urban and disadvantaged, or it may 
indicate that for some outcomes (eg, 
health), the negative consequences of 
a father’s death are underestimated 
in studies that rely exclusively 
on survey questions to measure 
health and disease, especially in 
children. Second, previous research 
suggests that income loss accounts 
for half of the association between 
a father’s death and negative 
outcomes for a child, whereas in our 
study, it accounts for only 25% of 
the association between a father’s 
death and child sTL. Besides income 
loss, previous research highlighted 
2 other possible mechanisms that 
underlie the link between father loss 
and negative outcomes for children: 
parenting quality and stability and 
neighborhood quality and stability. 
With respect to parenting, it is known 
that parenting quality can buffer 
the effect of adversity on TL.80 It is 
possible that the greater effect of a 
father’s death is due to a difference 
in a mother’s parenting behavior 
that is unique to the father’s death. 
It may also be due to a change in the 
father’s behavior. Whereas other 
types of father loss do not necessarily 
mean an end to the father-child 
relationship, death is a permanent 
loss. Future research should examine 
whether the quality and quantity 
of a mother’s parenting or father’s 
involvement after the initial loss 
can account for the large effect of a 
father’s death. Also, although father 
loss was measured prospectively 
since birth, TL was only measured at 

age 9. Additional research is needed 
to examine to what extent changes in 
a father’s presence is associated with 
changes in sTL. The current article 
cannot determine the temporal 
ordering of sTL shortening and the 
time the father stopped living with 
the child.

With respect to neighborhoods, the 
death of a father may be a marker 
of some condition that is associated 
with child sTL as well as the father’s 
death.7,  13,  15,  21, 22,  52,  53,  81 Whereas in 
most studies, a father’s death is 
viewed as a more or less random 
event, in our sample of low-income, 
urban families, death may be a 
marker of neighborhood violence or 
the presence of other environmental 
liabilities. Future research should 
pay close attention to the cause of 
fathers’ deaths to see if the negative 
association between child sTL and 
death is affected by different causes.

CONCLUSIONS

Although telomeres appear 
to be responsive to stressful 
environments during childhood, 
more basic biological research 
needs to be done before we can 
draw firm conclusions about the 
causal relationships between 
stress and TL. Such research could 
examine epigenetic modification of 
telomerase expression or activity as 
well as changes to cellular signaling 
pathways that could affect both 
telomere attrition and extension. 
Overall, however, this research 
provides a clear biological context for 
the association between all forms of 
father loss and previously described 
adult health effects later in life.
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