Skip to main content

Advertising Disclaimer »

Main menu

  • Journals
    • Pediatrics
    • Hospital Pediatrics
    • Pediatrics in Review
    • NeoReviews
    • AAP Grand Rounds
    • AAP News
  • Authors/Reviewers
    • Submit Manuscript
    • Author Guidelines
    • Reviewer Guidelines
    • Open Access
    • Editorial Policies
  • Content
    • Current Issue
    • Online First
    • Archive
    • Blogs
    • Topic/Program Collections
    • AAP Meeting Abstracts
  • Pediatric Collections
    • COVID-19
    • Racism and Its Effects on Pediatric Health
    • More Collections...
  • AAP Policy
  • Supplements
  • Multimedia
    • Video Abstracts
    • Pediatrics On Call Podcast
  • Subscribe
  • Alerts
  • Careers
  • Other Publications
    • American Academy of Pediatrics

User menu

  • Log in
  • Log out

Search

  • Advanced search
American Academy of Pediatrics

AAP Gateway

Advanced Search

AAP Logo

  • Log in
  • Log out
  • Journals
    • Pediatrics
    • Hospital Pediatrics
    • Pediatrics in Review
    • NeoReviews
    • AAP Grand Rounds
    • AAP News
  • Authors/Reviewers
    • Submit Manuscript
    • Author Guidelines
    • Reviewer Guidelines
    • Open Access
    • Editorial Policies
  • Content
    • Current Issue
    • Online First
    • Archive
    • Blogs
    • Topic/Program Collections
    • AAP Meeting Abstracts
  • Pediatric Collections
    • COVID-19
    • Racism and Its Effects on Pediatric Health
    • More Collections...
  • AAP Policy
  • Supplements
  • Multimedia
    • Video Abstracts
    • Pediatrics On Call Podcast
  • Subscribe
  • Alerts
  • Careers

Discover Pediatric Collections on COVID-19 and Racism and Its Effects on Pediatric Health

American Academy of Pediatrics
Article

Pulmonary Administration of Vasoactive Substances by Perfluorochemical Ventilation

Marla R. Wolfson, Jay S. Greenspan and Thomas H. Shaffer
Pediatrics April 1996, 97 (4) 449-455;
Marla R. Wolfson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jay S. Greenspan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas H. Shaffer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • Comments
Loading
Download PDF

Abstract

Objectives. Therapeutic management of respiratory distress syndrome, pneumonia, and pulmonary hypertension includes delivery of biologically active agents to the neonatal lung. However, mechanical abnormalities of the lung, intrapulmonary shunting, ventilation-perfusion mismatching, and elevated surface tension impede effective systemic or intratracheal delivery of agents to the lung during conventional gas ventilation. The objective of this study was to test the hypothesis that perfluorochemical (PFC) liquid ventilation can be used for pulmonary administration of vasoactive drugs (PAD) and to compare these responses to those elicited with intravascular (IV) administration during tidal liquid ventilation.

Methods. Cardiovascular responses of 16 preterm and neonatal lambs to randomized doses of acetylcholine, epinephrine, and priscoline were studied. Physiologic gas exchange and acid-base balance were maintained using previously described tidal liquid ventilation techniques. In subgroups of animals, the distribution pattern of carbon 1- and choline 14-labeled dipalmitoylphos-phatidylcholine (14C-DPPC) in saline and the responses to priscoline after hypoxia-induced pulmonary hypertension and hypoxemia administered during liquid ventilation were studied.

Results. Dose-response curves for PAD and IV administration demonstrated progressive, dose-dependent, cholinergic responses to acetylcholine (decreased mean systemic arterial pressure [MAP] and heart rate), sympathomimetic responses to epinephrine (increased MAP and heart rate), and α-adrenergic blockade responses to priscoline (decreased MAP and mean pulmonary arterial pressure). Compared with IV administration, PAD of priscoline resulted in a significantly greater decrease in pulmonary relative to systemic arterial pressure; this response was potentiated by hypoxia, reduced pulmonary pressures to near normal values, and improved oxygenation. The 14C-DPPC in saline was distributed relatively homogeneously throughout the lung by PAD, with 80% of the lung pieces receiving amounts of 14C-DPPC with ±20% of the mean value.

Conclusions. This study demonstrates that vasoactive agents can be delivered to the lung directly by PAD during PFC liquid ventilation. The inherent advantages of this method relate to the physical properties of PFC liquid ventilation as a vehicle (respiratory gas solublity, low surface tension-enhancing distribution, and inertness precluding interaction) and physiological properties of the lung as an exchanger.

  • Received September 13, 1995.
  • Accepted January 2, 1996.
  • Copyright © 1996 by the American Academy of Pediatrics
PreviousNext
Back to top

Advertising Disclaimer »

In this issue

Pediatrics
Vol. 97, Issue 4
1 Apr 1996
  • Table of Contents
  • Index by author
PreviousNext
Email Article

Thank you for your interest in spreading the word on American Academy of Pediatrics.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Pulmonary Administration of Vasoactive Substances by Perfluorochemical Ventilation
(Your Name) has sent you a message from American Academy of Pediatrics
(Your Name) thought you would like to see the American Academy of Pediatrics web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Request Permissions
Article Alerts
Log in
You will be redirected to aap.org to login or to create your account.
Or Sign In to Email Alerts with your Email Address
Citation Tools
Pulmonary Administration of Vasoactive Substances by Perfluorochemical Ventilation
Marla R. Wolfson, Jay S. Greenspan, Thomas H. Shaffer
Pediatrics Apr 1996, 97 (4) 449-455;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Pulmonary Administration of Vasoactive Substances by Perfluorochemical Ventilation
Marla R. Wolfson, Jay S. Greenspan, Thomas H. Shaffer
Pediatrics Apr 1996, 97 (4) 449-455;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Download PDF
Insight Alerts
  • Table of Contents

Jump to section

  • Article
  • Info & Metrics
  • Comments

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Pseudocalcification on chest CT scan
  • Recent advances: care of near term infants with respiratory failure
  • Pulmonary Administration of Gentamicin During Liquid Ventilation in a Newborn Lamb Lung Injury Model
  • Google Scholar

More in this TOC Section

  • Predictive Models of Neurodevelopmental Outcomes After Neonatal Hypoxic-Ischemic Encephalopathy
  • A Technology-Assisted Language Intervention for Children Who Are Deaf or Hard of Hearing: A Randomized Clinical Trial
  • Standard Versus Long Peripheral Catheters for Multiday IV Therapy: A Randomized Controlled Trial
Show more Articles

Similar Articles

  • Journal Info
  • Editorial Board
  • Editorial Policies
  • Overview
  • Licensing Information
  • Authors/Reviewers
  • Author Guidelines
  • Submit My Manuscript
  • Open Access
  • Reviewer Guidelines
  • Librarians
  • Institutional Subscriptions
  • Usage Stats
  • Support
  • Contact Us
  • Subscribe
  • Resources
  • Media Kit
  • About
  • International Access
  • Terms of Use
  • Privacy Statement
  • FAQ
  • AAP.org
  • shopAAP
  • Follow American Academy of Pediatrics on Instagram
  • Visit American Academy of Pediatrics on Facebook
  • Follow American Academy of Pediatrics on Twitter
  • Follow American Academy of Pediatrics on Youtube
  • RSS
American Academy of Pediatrics

© 2021 American Academy of Pediatrics