Skip to main content

Advertising Disclaimer »

Main menu

  • Journals
    • Pediatrics
    • Hospital Pediatrics
    • Pediatrics in Review
    • NeoReviews
    • AAP Grand Rounds
    • AAP News
  • Authors/Reviewers
    • Submit Manuscript
    • Author Guidelines
    • Reviewer Guidelines
    • Open Access
    • Editorial Policies
  • Content
    • Current Issue
    • Online First
    • Archive
    • Blogs
    • Topic/Program Collections
    • AAP Meeting Abstracts
  • Pediatric Collections
    • COVID-19
    • Racism and Its Effects on Pediatric Health
    • More Collections...
  • AAP Policy
  • Supplements
  • Multimedia
    • Video Abstracts
    • Pediatrics On Call Podcast
  • Subscribe
  • Alerts
  • Careers
  • Other Publications
    • American Academy of Pediatrics

User menu

  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
American Academy of Pediatrics

AAP Gateway

Advanced Search

AAP Logo

  • Log in
  • Log out
  • My Cart
  • Journals
    • Pediatrics
    • Hospital Pediatrics
    • Pediatrics in Review
    • NeoReviews
    • AAP Grand Rounds
    • AAP News
  • Authors/Reviewers
    • Submit Manuscript
    • Author Guidelines
    • Reviewer Guidelines
    • Open Access
    • Editorial Policies
  • Content
    • Current Issue
    • Online First
    • Archive
    • Blogs
    • Topic/Program Collections
    • AAP Meeting Abstracts
  • Pediatric Collections
    • COVID-19
    • Racism and Its Effects on Pediatric Health
    • More Collections...
  • AAP Policy
  • Supplements
  • Multimedia
    • Video Abstracts
    • Pediatrics On Call Podcast
  • Subscribe
  • Alerts
  • Careers

Discover Pediatric Collections on COVID-19 and Racism and Its Effects on Pediatric Health

American Academy of Pediatrics
Article

The Joint Commission Children’s Asthma Care Quality Measures and Asthma Readmissions

Bernhard A. Fassl, Flory L. Nkoy, Bryan L. Stone, Rajendu Srivastava, Tamara D. Simon, Derek A. Uchida, Karmella Koopmeiners, Tom Greene, Lawrence J. Cook and Christopher G. Maloney
Pediatrics September 2012, 130 (3) 482-491; DOI: https://doi.org/10.1542/peds.2011-3318
Bernhard A. Fassl
aDepartment of Pediatrics, University of Utah, Salt Lake City, Utah;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Flory L. Nkoy
aDepartment of Pediatrics, University of Utah, Salt Lake City, Utah;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bryan L. Stone
aDepartment of Pediatrics, University of Utah, Salt Lake City, Utah;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rajendu Srivastava
aDepartment of Pediatrics, University of Utah, Salt Lake City, Utah;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tamara D. Simon
bDepartment of Pediatrics, University of Washington, Seattle, Washington; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Derek A. Uchida
aDepartment of Pediatrics, University of Utah, Salt Lake City, Utah;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karmella Koopmeiners
bDepartment of Pediatrics, University of Washington, Seattle, Washington; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tom Greene
aDepartment of Pediatrics, University of Utah, Salt Lake City, Utah;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lawrence J. Cook
aDepartment of Pediatrics, University of Utah, Salt Lake City, Utah;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher G. Maloney
aDepartment of Pediatrics, University of Utah, Salt Lake City, Utah;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Comments
Loading
Download PDF

Abstract

BACKGROUND AND OBJECTIVES: The Joint Commission introduced 3 Children’s Asthma Care (CAC 1–3) measures to improve the quality of pediatric inpatient asthma care. Validity of the commission’s measures has not yet been demonstrated. The objectives of this quality improvement study were to examine changes in provider compliance with CAC 1–3 and associated asthma hospitalization outcomes after full implementation of an asthma care process model (CPM).

METHODS: The study included children aged 2 to 17 years who were admitted to a tertiary care children’s hospital for acute asthma between January 1, 2005, and December 31, 2010. The study was divided into 3 periods: preimplementation (January 1, 2005–December 31, 2007), implementation (January 1, 2008–March 31, 2009), and postimplementation (April 1, 2009–December 31, 2010) periods. Changes in provider compliance with CAC 1–3 and associated changes in hospitalization outcomes (length of stay, costs, PICU transfer, deaths, and asthma readmissions within 6 months) were measured. Logistic regression was used to control for age, gender, race, insurance type, and time.

RESULTS: A total of 1865 children were included. Compliance with quality measures before and after the CPM implementation was as follows: 99% versus 100%, CAC-1; 100% versus 100%, CAC-2; and 0% versus 87%, CAC-3 (P < .01). Increased compliance with CAC-3 was associated with a sustained decrease in readmissions from an average of 17% to 12% (P = .01) postimplementation. No change in other outcomes was observed.

CONCLUSIONS: Implementation of the asthma CPM was associated with improved compliance with CAC-3 and with a delayed, yet significant and sustained decrease in hospital asthma readmission rates, validating CAC-3 as a quality measure. Due to high baseline compliance, CAC-1 and CAC-2 are of questionable value as quality measures.

KEY WORDS
  • asthma
  • compliance
  • hospitalization
  • quality improvement
  • quality of care
  • Abbreviations:
    CAC —
    Children’s Asthma Care
    CPM —
    Care Process Model
    EDOS —
    electronic discharge order set
    ED —
    emergency department
    EDW —
    enterprise data warehouse
    HMPC —
    home management plan of care
    LOS —
    length of stay
    PCMC —
    Primary Children’s Medical Center
    QI —
    quality improvement
    RRU —
    relative resource unit
    TJC —
    The Joint Commission
  • What’s Known on This Subject:

    Asthma is a major reason for pediatric hospital admission. The Joint Commission requires freestanding children’s hospitals to report compliance with 3 Children’s Asthma Care quality measures. High compliance with these measures should result in decreased admissions and emergency department visits.

    What This Study Adds:

    Implementation of a standardized care process model for hospitalized asthmatic children resulted in high compliance with all 3 measures. Measures 1 and 2 did not provide an opportunity for improvement. Compliance with measure 3 resulted in significant decreases in readmission.

    Asthma is the most common chronic childhood illness and 1 of the most common reasons for hospitalization. More than 6 million children in the United States are affected by asthma, with an associated 700 000 emergency department (ED) visits and 200 000 hospital admissions annually,1,2 contributing to significant health care expenditures.3 Despite availability of asthma guidelines, quality of care provided to children hospitalized for asthma remains suboptimal, especially with regard to initiation of chronic asthma control and prevention of asthma readmissions.4–7 Six-month hospital readmission rates for subsequent asthma attacks are reportedly as high as 40%.8,9

    To improve the quality of pediatric inpatient asthma care, The Joint Commission (TJC), in collaboration with the National Association of Children’s Hospitals and Related Institutions, developed 3 Children’s Asthma Care (CAC) measures in 2003.10 CAC-1 and CAC-2 determine provider compliance with evidence-based management of acute exacerbations and are defined as “percentage of patients who received beta agonists” and “percentage of patients who received systemic steroids” during their hospital stay. CAC-3, patient discharge with a home management plan of care (HMPC), is a composite measure of compliance with 5 different interventions, all of which have been shown to improve chronic asthma symptoms and prevent exacerbations.11 CAC-3 requires all of the following elements to be documented: quick reliever and controller; follow-up appointment; environmental or other trigger control; and a written action plan. TJC does not define how information documented on the HMPC should be conveyed to patients/parents or what knowledge and skills competencies should be achieved. Recent research has suggested a lack of effect of CAC-3 on readmissions and raised concern that CAC-3 may not be an appropriate quality measure for inpatient asthma.12,13

    To improve care quality for children with asthma at our facility, which was poor at baseline,4 we developed and implemented an asthma care process model (CPM), which was subsequently adapted to support compliance with CAC measures. The objectives of the current study were to report changes from baseline in: (1) provider compliance with CAC measures 1–3; (2) asthma hospitalization outcomes including PICU transfer after inpatient admission, death, length of stay (LOS), costs, and relative resource units (RRUs); and (3) asthma readmission to an ED or hospital within 6 months of discharge after full implementation of the CPM.

    Methods

    Setting

    The study was conducted at Primary Children’s Medical Center (PCMC), an academic, freestanding children’s hospital in Salt Lake City, Utah, that is affiliated with the Department of Pediatrics at the University of Utah. PCMC serves as both the community pediatric hospital for Salt Lake County and as the tertiary care pediatric hospital for Utah and 4 surrounding states. PCMC is a 289-bed facility and is owned and operated by Intermountain Healthcare, a regional, not-for-profit integrated health care delivery system.14 The study was approved by the PCMC privacy board and the University of Utah institutional review board.

    Implementation and Evaluation of the Impact of the Asthma CPM

    Based on national guidelines and existing asthma quality measures, an asthma CPM was developed with the primary goal of standardizing care and improving quality. Implementation was facilitated by paper-based decision support tools embedded in the clinical workflow, including admission orders, discharge orders, criteria for specialist consultation, criteria for ICU transfer, and an asthma education module. To enhance knowledge and self-management skills in the ambulatory setting, a formal education program was introduced that used HMPC patient-specific instructions as a template for teaching. Admission and discharge order sets were designed to help providers comply with evidence-based recommendations for acute care (CAC-1 and CAC-2) and chronic asthma control (CAC-3), including documentation of elements required by the TJC.

    CPM implementation was a complex process because asthma patients were admitted across 4 hospital floors and involved multidisciplinary teams, including rotating residents, nurses, respiratory therapists, and health unit coordinators. Implementation was started in January 2008, and we intended completion by August 2008 using Plan-Do-Study-Act rapid cycle strategies.15,16 CPM implementation was delayed, however, because clinical tools needed to be modified frequently to incorporate provider feedback. Implementation of the admission orders was completed in August 2008, and paper-based discharge orders were completed in October 2008 (Fig 1). Due to persistent challenges in determining and documenting chronic asthma severity, a key element to determine the need and type of controller medication, we transitioned to an electronic discharge order set (EDOS) in October 2008. The EDOS mandated completion of an algorithm for selection of preventive therapy based on the National Institutes of Health chronic asthma severity assessment score11 and provided a prompt for the provider regarding which controllers to use. By using gap analyses and provider feedback, we made several substantial changes to the content of the EDOS to refine the application and address issues reported by providers.17 EDOS refinement with full implementation was completed by March 31, 2009.

    FIGURE 1
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIGURE 1

    Sample discharge order sheet.

    Study Design and Population

    A quality improvement (QI) study design was used.18 The study population included children aged 2 to 17 years, discharged between January 1, 2005, and December 31, 2010, with the primary International Classification of Diseases, Ninth Revision, diagnosis code of asthma 493.xx.

    Data Collection

    Information on patients was identified in the Enterprise Data Warehouse (EDW), a central database that links administrative data to clinical, laboratory, and pharmacy data for 22 Intermountain Healthcare hospitals and EDs in Utah.19 CAC compliance was based on TJC definitions.10 Data elements to determine compliance with CAC-1 and CAC-2 were obtained from coded data in the EDW. Data elements to determine compliance with CAC-3 were obtained through manual medical record review after patient discharge. Outcome variables were obtained from the EDW and included: death during inpatient stay, transfer to the PICU after floor admission, hospital LOS, variable hospitalization cost (direct cost related to patient care), hospital RRUs, and asthma hospital/ED readmissions (if asthma was the primary International Classification of Diseases, Ninth Revision, discharge code) within 6 months to any of 22 Intermountain Healthcare EDs and hospitals. RRU is a calculated value that describes the relative resource intensity associated with each hospital charge20 and controls for inflation to allow for cost comparisons across years. For children with multiple admissions, each hospitalization was accounted for separately. Demographic variables and other covariates21,22 were extracted from the EDW and included age, gender, race, and insurance status.

    Data Analysis

    Before implementation, we anticipated 3 study periods: pre–CPM implementation: January 1, 2005, through December 31, 2007; implementation: January 1, 2008, to July 31, 2008; post–CPM implementation: August 1, 2008, to December 31, 2009. To conform to the actual implementation time frame, a post-hoc revision of study periods was made to include the EDOS and extend the postimplementation observation an additional 12 months. The implementation period became January 1, 2008, to March 31, 2009, and postimplementation became April 1, 2009, to December 31, 2010. The remainder of the article references the revised study periods unless otherwise indicated.

    Demographic factors, CAC measure compliance, and hospitalization outcomes were summarized for the 3 implementation periods using frequencies and percentages for categorical factors and medians with interquartile ranges for continuous factors. Categorical factors were compared between the postimplementation and preimplementation periods by using χ2 tests or Fisher’s exact tests, and continuous factors were compared between these periods by using the Wilcoxon rank sum test. Proportions of patients satisfying CAC-1, CAC-2, and CAC-3 compliance criteria were computed quarterly and displayed graphically to display the pattern of compliance over time.

    Quantile regression was applied to compare the median LOS, costs, and RRU between the postimplementation and preimplementation periods with covariate adjustment for age, gender, race, and insurance type. Our primary outcome, readmission within 6 months, was compared between the postimplementation and preimplementation periods after adjustment for covariates by using logistic regression analysis. The primary outcomes are presented for the initial and revised definitions of the implementation and postimplementation phases.

    Results

    A total of 1865 children were discharged from PCMC with acute asthma: 754 (40%) preimplementation, 438 (24%) during CPM implementation, and 673 (36%) during postimplementation. There were no significant differences among demographic characteristics for the preimplementation versus postimplementation populations (Table 1).

    View this table:
    • View inline
    • View popup
    TABLE 1

    Patient Demographic Characteristics

    Baseline average compliance with CAC-1 and CAC-2 measures was high at 99% and 100%. Postimplementation, average compliance with both measures was 100%. Preimplementation compliance with the CAC-3 measure was 0% and improved to an average of 87% (P < .01) postimplementation. Changes in compliance with measures CAC 1–3 and their relation with CPM implementation process changes are detailed in Fig 2.

    FIGURE 2
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIGURE 2

    Monthly (%) CAC 1–3 compliance before, during, and after implementation of CPM.

    Table 2 summarizes results of compliance and secondary hospitalization outcomes comparing the preimplementation and postimplementation periods. No statistically significant differences were observed for any of the secondary hospitalization outcomes. Two deaths (1 preimplementation, 1 during implementation) were reported. Both patients were directly admitted to the PICU and did not receive CPM-related asthma care.

    View this table:
    • View inline
    • View popup
    TABLE 2

    Asthma CPM Implementation Process and Outcome Measures

    Table 3 summarizes the logistic regression analyses comparing readmissions within 6 months between the preimplementation and postimplementation periods by using our initial and revised definitions for the respective periods. No significant change in readmissions postimplementation were found in the initial analysis. After extending the implementation and postimplementation periods to conform to our actual QI experience, 6-month asthma readmission rates declined from an average of 17% to 12% between the preimplementation and postimplementation periods (P = .01). Figure 3 presents the quarterly percentages of patients readmitted within 6 months in a run chart, including the initial and revised postimplementation analysis periods. Reduction in asthma readmissions was not observed until after 9 months of sustained high CAC-3 compliance. During the study period, overall admission rates for the hospital and for nonasthma patients did not change.

    View this table:
    • View inline
    • View popup
    TABLE 3

    Primary Analysis of 6-month Readmission Rate

    FIGURE 3
    • Download figure
    • Open in new tab
    • Download powerpoint
    FIGURE 3

    Quarterly percentage of patients readmitted within 6 months. A, Postimplementation period: initial analysis. B, Postimplementation period: second analysis.

    Discussion

    Our study demonstrates that implementation of a CPM primarily designed to standardize asthma care while simultaneously supporting compliance with TJC CAC measures is associated with a delayed yet significant and sustained reduction in asthma readmissions, with no change in other hospitalization outcomes. To our knowledge, this is the first study to report a sustained reduction in pediatric asthma readmissions after introduction of the TJC CAC measures and contradicts the results reported by a recent study, which examined pooled data from 30 US children’s hospitals with a shorter outcomes observation period of 7, 30, or 90 days.11

    Our hospital’s compliance with CAC-3 was initially low. This finding is consistent with previous reports of poor quality of inpatient asthma care regarding interventions to prevent subsequent hospital admissions.4–6 Although standardization of asthma care is not a novel concept, previous studies primarily focused on assessing the impact on direct hospitalization outcomes such as hospital LOS and cost.23–32 These studies have been criticized for a lack of focus on interventions targeting long-term asthma control and readmission prevention.33 Our study provides evidence that an inpatient asthma CPM, including components targeting readmission, can decrease asthma readmissions when implemented by using standard QI strategies. Several factors contributed to our successful CPM implementation, including the culture of QI within the organization, a multidisciplinary implementation team, leadership support, and the CPM design itself.34–37 Our CPM ensured that standardized education was provided to enhance patient knowledge and skills on the basis of patient-specific content outlined in the HMPC. Our team regarded a hospitalization for asthma as an opportunity not only to support evidence-based inpatient treatment of acute symptoms but also to initiate preventive measures to reduce the risk for future asthma exacerbations and readmission.38,39 Our results demonstrate that preventive measures can be implemented during a brief inpatient stay and achieve lasting effects on asthma readmissions. None of our patients discharged was followed up by a case manager or with an additional telephone intervention or something similar. We believe that further reductions in readmissions could be possible if barriers to adequate outpatient care after hospital discharge could simultaneously be addressed.40–44

    Several factors may have contributed to the different findings between our study and results reported by Morse et al45: First, immediately after an increase in CAC-3 compliance we did not observe any change in 6-month asthma readmission rates. However, after a lag time of 9 months with high (>80%) CAC-3 compliance, asthma readmission rates showed decreased variability between measurement intervals, and a sustained decline from baseline. There may be a minimum sustained compliance threshold, which must be exceeded to see a change in readmissions.46–48 In addition, a lag time between improvement in process measures after QI interventions and observed changes in outcome measures is commonly reported.49–52 We believe that the study by Morse et al might have yielded different results if higher CAC-3 compliance was sustained over a longer period of time. Second, there may have been significant variability of the education provided along with the HMPC. Individualized asthma instructions, as done in our facility, have been shown to improve asthma control and reduce subsequent exacerbations.53–55 Third, Morse et al looked at readmission rates over time periods of 7, 30, and 90 days (while our time window was 6 months) and included pooled data from 30 hospitals that may have a great deal of individual variability in their compliance with CAC-3 and with changes in the measured outcomes.

    At our institution, baseline compliance with CAC-1 and CAC-2 measures was already optimal, with no room for improvement. High baseline compliance with CAC-1 and CAC-2 has also been reported in other institutions,56 suggesting that CAC-1 and CAC-2 may not be ideal measures.20 We propose a review of these measures and potential replacement with other validated Level A evidence acute care measures published in the literature.4,57 These might include measures such as mode of administration of systemic corticosteroids (oral versus intravenous) and short-acting β2-agonists delivered via metered-dose inhaler in children aged ≥5 years, for whom compliance is generally reported to be low, yet the potential to reduce costs is high.4 Measure CAC-3 was designed to ensure that hospitals provide a minimum standard of discharge instructions to improve chronic asthma symptom control and reduce the risk of future exacerbations.58–66 Our study demonstrated the effectiveness of CAC-3 on asthma readmissions under prolonged observation with high compliance and validates its inclusion as a quality indicator for asthma care. Our study also validates bundling of interventions in the form of an HMPC when detailed instructions are provided to the patient/family. In a subanalysis of the individual interventions, neither isolated presence of a follow-up appointment, discharge of controller medications, and completed asthma education in the preintervention period were associated with decreased readmissions.

    Whereas previous studies documented cost savings or decreases in hospital LOS after CPM implementation,25,26,28,67 we observed no change in cost or LOS. This difference could be explained by an already high baseline compliance with CAC-1 and CAC-2, both of which are associated with the speed of reversal of airflow obstruction and symptom improvement. Implementation of a CPM to improve compliance with asthma quality measures did not result in increased direct cost for the patient or insurance companies but did place a financial burden on the hospital. Costs associated with CPM development, implementation and maintenance, data collection, and reporting are not reflected in inpatient costs assessed to patients.

    There are limitations in our study. Our study was conducted at a single center, and therefore our CPM implementation strategies and findings may not be generalizable.68 Although ascertainment of asthma readmission information was evaluated at 22 Intermountain Healthcare facilities in Utah (Intermountain Healthcare covers 85% of pediatric care in the state of Utah), we were unable to capture readmissions that occurred outside the company’s system. Because Intermountain Healthcare operates the majority of hospitals and inpatient pediatric services in Utah (Scott Lloyd, personal communication, Strategic Planning, Intermountain Healthcare, August 24, 2010), we do not believe that missed readmissions would be significant enough to influence the results presented. Our CPM included components not defined by TJC CAC measures such as asthma education by using the HMPC as a patient-specific template. If effective, asthma education in itself may have influenced readmission rates. In addition, we did not collect information about ambulatory asthma care after discharge. Although we were unable to describe how outpatient care might have affected readmissions, no concurrent outpatient asthma QI interventions took place during the study period. Due to changes in analysis plans, including post-hoc adjustments of the implementation and postimplementation periods, we might have introduced bias toward detection of a change in readmissions. P values comparing outcomes between the revised periods may represent the bias. CPM implementation was a complex process in a real-world clinical setting and included frequent modifications of the implementation tools and processes, including an unplanned transition to the EDOS; it was difficult to determine the exact length of the implementation period a priori, but we believe that correcting those time periods presents more accurate results. Due to the nature of the evaluation conducted, we cannot presume a causal relationship between CPM implementation and reduced asthma readmissions. The CPM was introduced into a dynamic health care setting, in which many other unmeasured confounding factors may have affected the results. Our study was not designed to determine which specific elements of the CPM were associated with reduction in asthma readmissions. Per TJC requirements, we included only children with the primary diagnosis of asthma. Children with other primary diagnoses, especially viral infections such as respiratory syncytial virus and influenza, who also had an asthma exacerbation were excluded if asthma was not recorded in the primary position, and their outcomes are not reflected in our results. Furthermore, our postimplementation period covers the H1N1 outbreak. Review of our data suggested that the number of children admitted for acute asthma during the H1N1 outbreaks actually exceeded the numbers normally seen. In addition, we included children with medical complexity69 if their primary diagnosis was asthma but in analysis, we did not control for their impact on asthma outcomes.

    Conclusions

    Implementation of an asthma CPM was associated with an increase in compliance with TJC CAC-3 and a delayed yet significant and sustained decrease in asthma readmissions without a change in direct hospitalization costs, hospital LOS, or complications. A sustained high CAC-3 compliance and prolonged observation may be required to observe a significant reduction in readmissions. Baseline compliance with TJC CAC-1 and CAC-2 measures at our institution, as for many US hospitals, was already high with little opportunity for improvement, making these measures of questionable value to determine asthma care quality.

    Acknowledgments

    The authors acknowledge the nursing staff, respiratory therapy staff, and other medical and administrative staff at Primary Children’s Medical Center, particularly Julie Ballard (deceased), Douglas Wolfe, and DayValena Colling, for their efforts and diligence during the implementation of the CPM, as well as Cindy Weng, Xiaoming Cheng, and Jian Ying for their assistance during data analysis. We also thank the hospital leadership, including Dr Ed Clark, CMO, and Katie Welkie, CEO, for their support for this project.

    Footnotes

      • Accepted April 27, 2012.
    • Address correspondence to Christopher G. Maloney, MD, PhD, FAAP, Primary Children’s Medical Center, Division of Pediatric Inpatient Medicine, 100 N. Mario Capecchi Dr, Salt Lake City, UT 84113. E-mail: chris.maloney{at}hsc.utah.edu
    • The contents of this article are solely the responsibility of the authors and do not necessarily represent the official view of the Agency for Healthcare Research and Quality, the National Center for Research Resources, the National Cancer Institute, the National Institutes of Health, or the Pediatric Hospitalist Research Network.

    • Dr Fassl contributed to conception and design, acquisition, analysis, and interpretation of data; he drafted, made revisions, and approved the final version. Dr Nkoy contributed to conception and design, acquisition, analysis, and interpretation of data; he drafted, made revisions, and approved the final version. Dr Stone contributed to conception and design, acquisition, analysis, and interpretation of data; he made revisions and approved the final version. Dr Srivastava contributed to design, analysis, and interpretation of data; he made revisions and approved the final version. Dr Simon contributed to conception and design, analysis, and interpretation of data; she made revisions to the manuscript. Dr Uchida contributed to design, analysis, and interpretation of data; he made revisions and approved the final version. Ms Koopmeiners contributed to design, acquisition, analysis, and interpretation of data; she made revisions and approved the final version. Dr Green contributed to design, analysis, and interpretation of data; he made revisions and approved the final version. Dr Cook contributed to analysis and interpretation of data; he made revisions and approved the final version. Dr Maloney contributed to conception and design, acquisition, analysis, and interpretation of data; he made revisions and approved the final version.

    • FINANCIAL DISCLOSURE: Dr Srivastava is the Chair of a Pediatric Hospitalist Research Network (www.prisnetwork.org) that conducts a variety of research studies funding by the National Institutes of Health, AHRQ, and the Children's Hospital Association; the other authors have indicated they have no financial relationships relevant to this article to disclose.

    • FUNDING: Drs Fassl, Nkoy, Stone, and Maloney are supported by grant 1R18HS018166-01A1 (Organizational Factors Associated with Improved Inpatient Pediatric Asthma Care) and grant 1R18HS018678-01A1 (Improving Post-Hospital Transitions and Ambulatory Care for Children with Asthma) from the Agency for Healthcare Research and Quality. Dr Stone is also supported by Award KM1CA156723 from the National Cancer Institute. Dr Simon is supported by award K23NS062900 from the National Institute of Neurologic Disorders and Stroke, the Child Health Corporation of America via the Pediatric Research in Inpatient Setting Network Executive Council, and Seattle Children’s Center for Clinical and Translational Research, and Clinical & Translational Science Awards grant ULI RR025014 from the National Center for Research Resources, a component of the National Institutes of Health. Dr Srivastava is supported by the National Institutes of Child Health and Human Development, National Institutes of Health grant K23 HD052553-01A1, the Child Health Corporation of America via the Pediatric Research in Inpatient Setting Network Executive Council, and in part by the Children’s Health Research Center at the University of Utah and the Primary Children’s Medical Center Foundation. None of the sponsors participated in design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript.

    References

    1. ↵
      Guide for State Health Agencies in the Development of Asthma Programs; US Department of Health and Human Services, Centers for Disease Control and Prevention. CDC. Asthma prevalence, health care use and mortality, 2000-2001. Available at: www.cdc.gov/nchs/products/pubs/pubd/hestats/asthma/asthma.htm. Accessed February 26, 2010
    2. ↵
      1. Akinbami LJ,
      2. Schoendorf KC
      . Trends in childhood asthma: prevalence, health care utilization, and mortality. Pediatrics. 2002;110(2 pt 1):315–322pmid:12165584
      OpenUrlAbstract/FREE Full Text
    3. ↵
      1. Fuhlbrigge AL,
      2. Adams RJ,
      3. Guilbert TW.,
      4. The burden of asthma in the United States
      . Am J Respir Crit Care. 2002;166(8):1044–1049
      OpenUrl
    4. ↵
      1. Nkoy FL,
      2. Fassl BA,
      3. Simon TD,
      4. et al
      . Quality of care for children hospitalized with asthma. Pediatrics. 2008;122(5):1055–1063pmid:18977987
      OpenUrlAbstract/FREE Full Text
      1. Friday GA Jr,
      2. Khine H,
      3. Lin MS,
      4. Caliguiri LA
      . Profile of children requiring emergency treatment for asthma. Ann Allergy Asthma Immunol. 1997;78(2):221–224pmid:9048532
      OpenUrlPubMed
    5. ↵
      1. Kattan M
      . Quality of inpatient care for asthma: challenges and opportunities. Pediatrics. 2008;122(6):1369–1370pmid:19047258
      OpenUrlFREE Full Text
    6. ↵
      1. Cabana MD,
      2. Bruckman D,
      3. Meister K,
      4. Bradley JF,
      5. Clark N
      . Documentation of asthma severity in pediatric outpatient clinics. Clin Pediatr (Phila). 2003;42(2):121–125pmid:12659384
      OpenUrlAbstract/FREE Full Text
    7. ↵
      1. Minkovitz CS,
      2. Andrews JS,
      3. Serwint JR
      . Rehospitalization of children with asthma. Arch Pediatr Adolesc Med. 1999;153(7):727–730pmid:10401806
      OpenUrlCrossRefPubMed
    8. ↵
      1. Farber HJ
      . Risk of readmission to hospital for pediatric asthma. J Asthma. 1998;35(1):95–99pmid:9513588
      OpenUrlCrossRefPubMed
    9. ↵
      Joint Commission. Clinical Asthma Care core performance measures; specification manual for National Hospital Inpatient Quality measures, version 3.2c. Available at: www.jointcommission.org/specification_manual_for_national_hospital_inpatient_quality_measures. Accessed December 14, 2010
    10. ↵
      National Heart, Lung and Blood Institute. National Asthma Education and Prevention Program. Expert Panel Report 3: Guidelines for the Diagnosis and Management of Asthma. Full report 2007. Available at: www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf. Accessed May 29, 2012
    11. ↵
      1. Morse RB,
      2. Hall M,
      3. Fieldston ES,
      4. et al
      . Hospital-level compliance with asthma care quality measures at children’s hospitals and subsequent asthma-related outcomes. JAMA. 2011;306(13):1454–1460pmid:21972307
      OpenUrlCrossRefPubMed
    12. ↵
      1. Homer CJ
      . Improving improvement for childhood asthma. JAMA. 2011;306(13):1487–1488pmid:21972314
      OpenUrlCrossRefPubMed
    13. ↵
      Intermountain Healthcare, Primary Children’s Medical Center. Available at: www.intermountainhealthcare.org/hospitals/primarychildrens/pages/home.aspx. Accessed January 18, 2011
    14. ↵
      Agency for HealthCare Research Quality (AHRQ). Managing and evaluating rapid-cycle process improvements as vehicles for hospital system redesign. Available at: www.ahrq.gov/qual/rapidcycle/rapidcycle1.htm. Accessed May 25, 2011
    15. ↵
      1. Institute of Medicine, Committee on Quality of Health Care in America
      . Crossing the Quality Chasm: A New System for the 21st Century. Washington, DC: National Academies Press; 2001:5
    16. ↵
      1. Nkoy FL,
      2. Fassl BA,
      3. Wolfe D,
      4. Colling D,
      5. Hales JW,
      6. Maloney CG
      . Sustaining compliance with pediatric asthma inpatient quality measures. AMIA Annu Symp Proc. 2010;2010:547–551pmid:21347038
      OpenUrlPubMed
    17. ↵
      1. Harlan GA,
      2. Nkoy FL,
      3. Srivastava R,
      4. et al
      . Improving transitions of care at hospital discharge—implications for pediatric hospitalists and primary care providers. J Healthc Qual. 2010;32(5):51–60pmid:20854359
      OpenUrlPubMed
    18. ↵
      1. Clayton PD,
      2. Narus SP,
      3. Huff SM,
      4. et al
      . Building a comprehensive clinical information system from components. The approach at Intermountain Health Care. Methods Inf Med. 2003;42(1):1–7pmid:12695790
      OpenUrlPubMed
    19. ↵
      National Committee for Quality Assurance (NCQA). The surprising health care cost-quality disconnect. Using NCQA’s relative resource use measures to get value: efficient, high-quality care. Available at: www.ncqa.org/tabid/1231/Default.aspx. Accessed August 30, 2011
    20. ↵
      1. Smith K,
      2. Warholak T,
      3. Armstrong E,
      4. Leib M,
      5. Rehfeld R,
      6. Malone D
      . Evaluation of risk factors and health outcomes among persons with asthma. J Asthma. 2009;46(3):234–237pmid:19373629
      OpenUrlCrossRefPubMed
    21. ↵
      1. Rasmussen F,
      2. Taylor DR,
      3. Flannery EM,
      4. et al
      . Risk factors for hospital admission for asthma from childhood to young adulthood: a longitudinal population study. J Allergy Clin Immunol. 2002;110(2):220–227pmid:12170261
      OpenUrlCrossRefPubMed
    22. ↵
      Johnson KB, Blaisdell CJ, Walker A, Eggleston P. Effectiveness of a clinical pathway for inpatient asthma management. Pediatrics. 2000;106(5):1006–1012
    23. Kwan-Gett TS, Lozano P, Mullin K, Marcuse EK. One-year experience with an inpatient asthma clinical pathway. Arch Pediatr Adolesc Med. 1997;151(7):684–689
    24. ↵
      1. Kelly CS,
      2. Andersen CL,
      3. Pestian JP,
      4. et al
      . Improved outcomes for hospitalized asthmatic children using a clinical pathway. Ann Allergy Asthma Immunol. 2000;84(5):509–516pmid:10831004
      OpenUrlPubMed
    25. ↵
      1. Wazeka A,
      2. Valacer DJ,
      3. Cooper M,
      4. Caplan DW,
      5. DiMaio M
      . Impact of a pediatric asthma clinical pathway on hospital cost and length of stay. Pediatr Pulmonol. 2001;32(3):211–216pmid:11536450
      OpenUrlCrossRefPubMed
      1. Cunningham S,
      2. Logan C,
      3. Lockerbie L,
      4. Dunn MJ,
      5. McMurray A,
      6. Prescott RJ
      . Effect of an integrated care pathway on acute asthma/wheeze in children attending hospital: cluster randomized trial. J Pediatr. 2008;152(3):315–320pmid:18280833
      OpenUrlCrossRefPubMed
    26. ↵
      1. Bailey R,
      2. Weingarten S,
      3. Lewis M,
      4. Mohsenifar Z
      . Impact of clinical pathways and practice guidelines on the management of acute exacerbations of bronchial asthma. Chest. 1998;113(1):28–33pmid:9440564
      OpenUrlCrossRefPubMed
      1. McDowell KM,
      2. Chatburn RL,
      3. Myers TR,
      4. O’Riordan MA,
      5. Kercsmar CM
      . A cost-saving algorithm for children hospitalized for status asthmaticus. Arch Pediatr Adolesc Med. 1998;152(10):977–984pmid:9790607
      OpenUrlCrossRefPubMed
      1. Ebbinghaus S,
      2. Bahrainwala AH
      . Asthma management by an inpatient asthma care team. Pediatr Nurs. 2003;29(3):177–183pmid:12836993
      OpenUrlPubMed
      1. Mitchell EA,
      2. Didsbury PB,
      3. Kruithof N,
      4. et al
      . A randomized controlled trial of an asthma clinical pathway for children in general practice. Acta Paediatr. 2005;94(2):226–233pmid:15981759
      OpenUrlCrossRefPubMed
    27. ↵
      Cheah J. Clinical pathways—an evaluation of its impact on the quality of care in an acute care general hospital in Singapore. Singapore Med J. 2000;41(7):335–346
    28. ↵
      1. Glauber JH,
      2. Farber HJ,
      3. Homer CJ
      . Asthma clinical pathways: toward what end? Pediatrics. 2001;107(3):590–592pmid:11230605
      OpenUrlFREE Full Text
    29. ↵
      1. Soumerai SB,
      2. McLaughlin TJ,
      3. Gurwitz JH,
      4. et al
      . Effect of local medical opinion leaders on quality of care for acute myocardial infarction: a randomized controlled trial. JAMA. 1998;279(17):1358–1363pmid:9582043
      OpenUrlCrossRefPubMed
      1. Subramanian U,
      2. Sutherland J,
      3. McCoy KD,
      4. Welke KF,
      5. Vaughn TE,
      6. Doebbeling BN
      . Facility-level factors influencing chronic heart failure care process performance in a national integrated health delivery system. Med Care. 2007;45(1):28–45pmid:17279019
      OpenUrlCrossRefPubMed
      1. Sonnad SS
      . Organizational tactics for the successful assimilation of medical practice guidelines. Health Care Manage Rev. 1998;23(3):30–37pmid:9702559
      OpenUrlPubMed
    30. ↵
      1. Curry SJ
      . Organizational interventions to encourage guideline implementation. Chest. 2000;118(suppl 2):40S–46Spmid:10939998
      OpenUrlCrossRefPubMed
    31. ↵
      1. Mitchell EA,
      2. Bland JM,
      3. Thompson JM
      . Risk factors for readmission to hospital for asthma in childhood. Thorax. 1994;49(1):33–36pmid:8153938
      OpenUrlAbstract/FREE Full Text
    32. ↵
      Joint Commission on Accreditation of Healthcare Organizations. Sentinel Events: Evaluating Cause and Planning Improvement. Oak Brook Terrace, IL: Joint Commission on Accreditation of Healthcare Organizations; 1998:7
    33. ↵
      1. Butler K,
      2. Cooper WO
      . Adherence of pediatric asthma patients with oral corticosteroid prescriptions following pediatric emergency department visit or hospitalization. Pediatr Emerg Care. 2004;20(11):730–735pmid:15502653
      OpenUrlPubMed
      1. Leickly FE,
      2. Wade SL,
      3. Crain E,
      4. Kruszon-Moran D,
      5. Wright EC,
      6. Evans R III
      . Self-reported adherence, management behavior, and barriers to care after an emergency department visit by inner city children with asthma. Pediatrics. 1998;101(5). Available at: www.pediatrics.org/cgi/content/full/101/5/E8pmid:9565441
      OpenUrl
      1. Zeiger RS,
      2. Heller S,
      3. Mellon MH,
      4. Wald J,
      5. Falkoff R,
      6. Schatz M
      . Facilitated referral to asthma specialist reduces relapses in asthma emergency room visits. J Allergy Clin Immunol. 1991;87(6):1160–1168pmid:2045618
      OpenUrlCrossRefPubMed
      1. Kelly CS,
      2. Morrow AL,
      3. Shults J,
      4. Nakas N,
      5. Strope GL,
      6. Adelman RD
      . Outcomes evaluation of a comprehensive intervention program for asthmatic children enrolled in medicaid. Pediatrics. 2000;105(5):1029–1035pmid:10790458
      OpenUrlAbstract/FREE Full Text
    34. ↵
      1. Griswold SK,
      2. Nordstrom CR,
      3. Clark S,
      4. Gaeta TJ,
      5. Price ML,
      6. Camargo CA Jr
      . Asthma exacerbations in North American adults: who are the “frequent fliers” in the emergency department? Chest. 2005;127(5):1579–1586pmid:15888831
      OpenUrlCrossRefPubMed
    35. ↵
      Fassl B, Nkoy F, Simon T, Srivastava R, Maloney C. Impact of an Asthma Clinical Pathway on The Joint Commission Clinical Asthma Care Performance Measures. J Invest Med. 2010;58(1):174
    36. ↵
      Zaslow M, Anderson R, Redd Z, Wessel J, Tarullo L, Burchinal M. Quality Dosage, Thresholds, and Features in Early Childhood Settings: A Review of the Literature, OPRE 2011-5. Washington, DC: Office of Planning, Research and Evaluation, Administration for Children and Families, US Department of Health and Human Services; 2010
      1. Hayward RS,
      2. Wilson MC,
      3. Tunis SR,
      4. Bass EB,
      5. Guyatt G
      . Users’ guides to the medical literature. VIII. How to use clinical practice guidelines. A. Are the recommendations valid? The Evidence-Based Medicine Working Group. JAMA. 1995;274(7):570–574pmid:7629987
      OpenUrlCrossRefPubMed
    37. ↵
      1. Werner RM,
      2. Bradlow ET
      . Public reporting on hospital process improvements is linked to better patient outcomes. Health Aff (Millwood). 2010;29(7):1319–1324pmid:20606180
      OpenUrlAbstract/FREE Full Text
    38. ↵
      1. Rosenthal MB,
      2. Frank RG,
      3. Li Z,
      4. Epstein AM
      . Early experience with pay-for-performance: from concept to practice. JAMA. 2005;294(14):1788–1793pmid:16219882
      OpenUrlCrossRefPubMed
      1. Hillman AL,
      2. Ripley K,
      3. Goldfarb N,
      4. Weiner J,
      5. Nuamah I,
      6. Lusk E
      . The use of physician financial incentives and feedback to improve pediatric preventive care in Medicaid managed care. Pediatrics. 1999;104(4 pt 1):931–935pmid:10506237
      OpenUrlAbstract/FREE Full Text
      1. Dudley RA
      . Pay-for-performance research: how to learn what clinicians and policy makers need to know. JAMA. 2005;294(14):1821–1823pmid:16219887
      OpenUrlCrossRefPubMed
    39. ↵
      1. Mehrotra A,
      2. Pearson SD,
      3. Coltin KL,
      4. et al
      . The response of physician groups to P4P incentives. Am J Manag Care. 2007;13(5):249–255pmid:17488190
      OpenUrlPubMed
    40. ↵
      Wesseldine LJ, McCarthy P, Silverman M. Structured discharge procedure for children admitted to hospital with acute asthma: a randomized controlled trial of nursing practice. Arch Dis Child. 1999;80(2):110–114
      1. Madge P,
      2. McColl J,
      3. Paton J
      . Impact of a nurse-led home management training programme in children admitted to hospital with acute asthma: a randomised controlled study. Thorax. 1997;52(3):223–228pmid:9093336
      OpenUrlAbstract
    41. ↵
      1. Gibson PG,
      2. Powell H,
      3. Coughlan J,
      4. et al
      . Self-management education and regular practitioner review for adults with asthma. Cochrane Database Syst Rev. 2003;(1):CD001117pmid:12535399
      OpenUrlPubMed
    42. ↵
      Data source: NACHRI database. Available at: https://benchmark.childrenshospitals.net/. Accessed May 29, 2012
    43. ↵
      1. Bravata DM,
      2. Gienger AL,
      3. Holty JE,
      4. et al
      . Quality improvement strategies for children with asthma: a systematic review. Arch Pediatr Adolesc Med. 2009;163(6):572–581pmid:19487615
      OpenUrlCrossRefPubMed
    44. ↵
      1. Cates CJ,
      2. Crilly JA,
      3. Rowe BH
      . Holding chambers (spacers) versus nebulisers for beta-agonist treatment of acute asthma. Cochrane Database Syst Rev. 2006;(2):CD000052pmid:16625527
      OpenUrlPubMed
      1. Krouse JH,
      2. Krouse HJ
      . Asthma: guidelines-based control and management. Otolaryngol Clin North Am. 2008;41(2):397–409, viiipmid:18328377
      OpenUrlCrossRefPubMed
      1. Bateman ED,
      2. Bousquet J,
      3. Keech ML,
      4. Busse WW,
      5. Clark TJ,
      6. Pedersen SE
      . The correlation between asthma control and health status: the GOAL study. Eur Respir J. 2007;29(1):56–62pmid:17050557
      OpenUrlAbstract/FREE Full Text
      1. Butz A,
      2. Pham L,
      3. Lewis L,
      4. et al
      . Rural children with asthma: impact of a parent and child asthma education program. J Asthma. 2005;42(10):813–821pmid:16393717
      OpenUrlCrossRefPubMed
      1. Homer SD
      . Effect of education on school-age children’s and parents’ asthma management. J Spec Pediatr Nurs. 2004;9(3):95–102pmid:15553551
      OpenUrlCrossRefPubMed
      1. Butz AM,
      2. Syron L,
      3. Johnson B,
      4. Spaulding J,
      5. Walker M,
      6. Bollinger ME
      . Home-based asthma self-management education for inner city children. Public Health Nurs. 2005;22(3):189–199pmid:15982192
      OpenUrlCrossRefPubMed
      1. Gibson PG,
      2. Powell H
      . Written action plans for asthma: an evidence-based review of the key components. Thorax. 2004;59(2):94–99pmid:14760143
      OpenUrlAbstract/FREE Full Text
      1. Sin DD,
      2. Bell NR,
      3. Svenson LW,
      4. Man SF
      . The impact of follow-up physician visits on emergency readmissions for patients with asthma and chronic obstructive pulmonary disease: a population-based study. Am J Med. 2002;112(2):120–125pmid:11835950
      OpenUrlCrossRefPubMed
    45. ↵
      Withy K, Davis J. Followup after an emergency department visit for asthma: urban/rural patterns. Ethn Dis. 2008;18(2 suppl 2):S2-247–S2-251
    46. ↵
      1. Johnson KB,
      2. Blaisdell CJ,
      3. Walker A,
      4. Eggleston P
      . Effectiveness of a clinical pathway for inpatient asthma management. Pediatrics. 2000;106(5):1006–1012pmid:11061767
      OpenUrlAbstract/FREE Full Text
    47. ↵
      1. Harrison MB,
      2. Légaré F,
      3. Graham ID,
      4. Fervers B
      . Adapting clinical practice guidelines to local context and assessing barriers to their use. CMAJ. 2010;182(2):E78–E84pmid:19969563
      OpenUrlFREE Full Text
    48. ↵
      1. Cohen E,
      2. Kuo DZ,
      3. Agrawal R,
      4. et al
      . Children with medical complexity: an emerging population for clinical and research initiatives. Pediatrics. 2011;127(3):529–538pmid:21339266
      OpenUrlAbstract/FREE Full Text
    • Copyright © 2012 by the American Academy of Pediatrics
    PreviousNext
    Back to top

    Advertising Disclaimer »

    In this issue

    Pediatrics
    Vol. 130, Issue 3
    1 Sep 2012
    • Table of Contents
    • Index by author
    View this article with LENS
    PreviousNext
    Email Article

    Thank you for your interest in spreading the word on American Academy of Pediatrics.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    The Joint Commission Children’s Asthma Care Quality Measures and Asthma Readmissions
    (Your Name) has sent you a message from American Academy of Pediatrics
    (Your Name) thought you would like to see the American Academy of Pediatrics web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Request Permissions
    Article Alerts
    Log in
    You will be redirected to aap.org to login or to create your account.
    Or Sign In to Email Alerts with your Email Address
    Citation Tools
    The Joint Commission Children’s Asthma Care Quality Measures and Asthma Readmissions
    Bernhard A. Fassl, Flory L. Nkoy, Bryan L. Stone, Rajendu Srivastava, Tamara D. Simon, Derek A. Uchida, Karmella Koopmeiners, Tom Greene, Lawrence J. Cook, Christopher G. Maloney
    Pediatrics Sep 2012, 130 (3) 482-491; DOI: 10.1542/peds.2011-3318

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Share
    The Joint Commission Children’s Asthma Care Quality Measures and Asthma Readmissions
    Bernhard A. Fassl, Flory L. Nkoy, Bryan L. Stone, Rajendu Srivastava, Tamara D. Simon, Derek A. Uchida, Karmella Koopmeiners, Tom Greene, Lawrence J. Cook, Christopher G. Maloney
    Pediatrics Sep 2012, 130 (3) 482-491; DOI: 10.1542/peds.2011-3318
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    Print
    Download PDF
    Insight Alerts
    • Table of Contents

    Jump to section

    • Article
      • Abstract
      • Methods
      • Results
      • Discussion
      • Conclusions
      • Acknowledgments
      • Footnotes
      • References
    • Figures & Data
    • Info & Metrics
    • Comments

    Related Articles

    • No related articles found.
    • PubMed
    • Google Scholar

    Cited By...

    • Contextual Factors Influencing Implementation of Evidence-Based Care for Children Hospitalized With Asthma
    • Hospital-to-Home Interventions, Use, and Satisfaction: A Meta-analysis
    • Inpatient Quality Improvement Interventions for Asthma: A Meta-analysis
    • Inpatient Asthma Care and Future Morbidity: A Role for Quality Improvement
    • A Quality Improvement Intervention to Improve Inpatient Pediatric Asthma Controller Accuracy
    • Development and Testing of the Pediatric Respiratory Illness Measurement System (PRIMES) Quality Indicators
    • Improving the Efficiency of Care for Pediatric Patients Hospitalized With Asthma
    • Improving Pediatric Asthma Care and Outcomes Across Multiple Hospitals
    • Heterogeneity in Asthma Care in a Statewide Collaborative: the Ohio Pediatric Asthma Repository
    • Readmissions Among Children Previously Hospitalized With Pneumonia
    • Linking Patient-Centered Medical Home and Asthma Measures Reduces Hospital Readmission Rates
    • Measuring Hospital Quality Using Pediatric Readmission and Revisit Rates
    • Top Articles in Pediatric Hospital Medicine
    • Google Scholar

    More in this TOC Section

    • Applications of Artificial Intelligence for Retinopathy of Prematurity Screening
    • Phenobarbital and Clonidine as Secondary Medications for Neonatal Opioid Withdrawal Syndrome
    • A Prevention Program for Insomnia in At-risk Adolescents: A Randomized Controlled Study
    Show more Article

    Similar Articles

    Subjects

    • Pulmonology
      • Pulmonology
      • Asthma
      • Respiratory Tract
    • Journal Info
    • Editorial Board
    • Editorial Policies
    • Overview
    • Licensing Information
    • Authors/Reviewers
    • Author Guidelines
    • Submit My Manuscript
    • Open Access
    • Reviewer Guidelines
    • Librarians
    • Institutional Subscriptions
    • Usage Stats
    • Support
    • Contact Us
    • Subscribe
    • Resources
    • Media Kit
    • About
    • International Access
    • Terms of Use
    • Privacy Statement
    • FAQ
    • AAP.org
    • shopAAP
    • Follow American Academy of Pediatrics on Instagram
    • Visit American Academy of Pediatrics on Facebook
    • Follow American Academy of Pediatrics on Twitter
    • Follow American Academy of Pediatrics on Youtube
    • RSS
    American Academy of Pediatrics

    © 2021 American Academy of Pediatrics