Skip to main content

Advertising Disclaimer »

Main menu

  • Journals
    • Pediatrics
    • Hospital Pediatrics
    • Pediatrics in Review
    • NeoReviews
    • AAP Grand Rounds
    • AAP News
  • Authors/Reviewers
    • Submit Manuscript
    • Author Guidelines
    • Reviewer Guidelines
    • Open Access
    • Editorial Policies
  • Content
    • Current Issue
    • Online First
    • Archive
    • Blogs
    • Topic/Program Collections
    • AAP Meeting Abstracts
  • Pediatric Collections
    • COVID-19
    • Racism and Its Effects on Pediatric Health
    • More Collections...
  • AAP Policy
  • Supplements
  • Multimedia
    • Video Abstracts
    • Pediatrics On Call Podcast
  • Subscribe
  • Alerts
  • Careers
  • Other Publications
    • American Academy of Pediatrics

User menu

  • Log in
  • My Cart

Search

  • Advanced search
American Academy of Pediatrics

AAP Gateway

Advanced Search

AAP Logo

  • Log in
  • My Cart
  • Journals
    • Pediatrics
    • Hospital Pediatrics
    • Pediatrics in Review
    • NeoReviews
    • AAP Grand Rounds
    • AAP News
  • Authors/Reviewers
    • Submit Manuscript
    • Author Guidelines
    • Reviewer Guidelines
    • Open Access
    • Editorial Policies
  • Content
    • Current Issue
    • Online First
    • Archive
    • Blogs
    • Topic/Program Collections
    • AAP Meeting Abstracts
  • Pediatric Collections
    • COVID-19
    • Racism and Its Effects on Pediatric Health
    • More Collections...
  • AAP Policy
  • Supplements
  • Multimedia
    • Video Abstracts
    • Pediatrics On Call Podcast
  • Subscribe
  • Alerts
  • Careers

Discover Pediatric Collections on COVID-19 and Racism and Its Effects on Pediatric Health

American Academy of Pediatrics
ELECTRONIC ARTICLES

Neurotoxicities in Infants Seen With the Consumption of Star Anise Tea

Diego Ize-Ludlow, Sean Ragone, Isaac S. Bruck, Jeffrey N. Bernstein, Michael Duchowny and Barbara M. Garcia Peña
Pediatrics November 2004, 114 (5) e653-e656; DOI: https://doi.org/10.1542/peds.2004-0058
Diego Ize-Ludlow
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sean Ragone
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Isaac S. Bruck
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey N. Bernstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Duchowny
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Barbara M. Garcia Peña
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Comments
Loading
Download PDF

Abstract

Chinese star anise (Illicium verum Hook f.) is a well-known spice used in many cultures. Many populations use it as a treatment for infant colic. Japanese star anise (Illicium anisatum L), however, has been documented to have both neurologic and gastrointestinal toxicities. Recently, concern has been raised regarding the adulteration of Chinese star anise with Japanese star anise. We report 7 cases of adverse neurologic reactions in infants seen with the home administration of star anise tea. In addition, we have found evidence that Chinese star anise has been contaminated with Japanese star anise. More strict federal regulation of the import of star anise into the United States is warranted. Star anise tea should no longer be administered to infants because of its potential danger in this population.

  • star anise
  • neurotoxicity
  • colic
  • infants

Chinese star anise (Illicium verum Hook f.) is a well-known spice used in many cultures. Caribbean and Latino populations typically use a tea infusion of its 8-pointed stellate fruit (Fig 1) as a carminative and sedative for the treatment of infant colic. Because of its long history of herbal and culinary uses, Chinese star anise has been commonly regarded as being safe and nontoxic. A closely related species, Japanese star anise (Illicium anisatum L, syn. I japonicum Sieb, syn. I religiosum Sieb et Zucc), has been well documented to cause both neurologic and gastrointestinal toxicities.1–5

Fig 1
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig 1

Morphology of Chinese anise star fruit.

All Illicium species contain sesquiterpene lactone compounds,6–12 a large and diverse group of biologically active plant chemicals, most containing a number of secondary metabolite products related to anisatin, neoanisatin, and pseudoanisatin, the potent neurotoxins found in Japanese star anise.13,14 Although Chinese star anise is considered safe for consumption, this species also contains toxic compounds named veranisatins A, B, and C.15 Although these veranisatins are not as potent as anisatin itself, neurologic symptoms are observed at higher doses.15 Anisatin compounds are thought to act as potent noncompetitive γ-aminobutyric acid antagonists.16–20

Concern has been raised regarding the adulteration of I verum with I anisatum and has led to recalls of these products in other countries, including Spain, France, Scotland, China, Japan, and Netherlands.21–23 In this communication, we report 7 cases of adverse neurologic reactions associated with the home administration of star anise tea to young infants seen during the past 2 years at Miami Children's Hospital. In addition, we have discovered adulteration of several of the Chinese star anise samples with I anisatum.

METHODS

Clinical Cases

Over a 2-year period, infants with signs and symptoms of star anise intoxication were identified in the emergency department of Miami Children's Hospital. Miami Children's Hospital is a large, urban, pediatric teaching hospital with an emergency department that sees 87 000 patients per year. Signs and symptoms of star anise intoxication include jitteriness, hyperexcitability, nystagmus, vomiting, myoclonic movements, and seizures. We included patients who experienced an otherwise unexplainable acute onset of 1 or more signs of star anise intoxication after the ingestion of star anise tea.

Analysis of Samples

Samples were obtained and analyzed from 3 of the patients (5, 6, and 7) to determine whether readily available herbal packages of I verum had been contaminated with the toxic I anisatum. Samples from the remaining 4 patients were not available for analysis. Three samples of Chinese star anise were also purchased from local stores for comparative morphologic and chemical analysis. All fruits were inspected for the defining structures of I verum and I anisatum.

The volatile fraction from each sample was then examined by gas chromatography–mass spectroscopy (GC-MS) techniques for the presence of safrole and eugenol, compounds found in all toxic Illicium species but not in I verum.24–28 The samples were also examined for the presence of anethole, found in I verum in concentrations of 72% to 92%.24–28 Other Illicium species typically have anethole concentrations <40%.29,30 The isolation and characterization of anisatin and neoanisatin31–33 using liquid chromatography–mass spectroscopy techniques was also performed. The method of the liquid chromatography–mass spectroscopy and GC-MS analyses are described elsewhere.34

RESULTS

Clinical Cases

Seven cases of infants who were aged 2 to 12 weeks and had signs of acute star anise intoxication were identified over a 2-year period. The cases are presented in Table 1. Symptoms included seizures, jitteriness, irritability, hyperexcitability, emesis, vertical nystagmus, and myoclonic movements. The dose of star anise varied from 1 star to 6 stars boiled in varying ounces of water administered as little as once per day to as much as every 4 hours. The duration of exposure varied from a 1-time exposure to a 2-week exposure. On physical examination, all of the patients exhibited neurologic signs as described in the table. Laboratory work, electroencephalogram findings, and neuroimaging studies were normal in all of the patients. Each patient experienced a complete recovery to neurologic baseline within 48 hours of treatment.

View this table:
  • View inline
  • View popup
TABLE 1.

Cases of Star Anise Intoxication Seen in the Miami Children’s Hospital Emergency Department

Analysis of Samples

Initially, all samples were examined microscopically for distinguishing morphologic characteristics. Features such as beaked follicles, broad dehiscence, size, and color did not prove suitable for a definitive determination of I anisatum adulteration because of the inherent variation observed in the hundreds of I verum fruits examined. Thus, plant material obtained from our patients was inadequate for making a determination on the basis of morphology, because we lacked complete fruits for some samples and others contained fruits that had characteristics from both species.

In the GC-MS analysis of patient 7, anethole was found to compose at least 75% of the essential oil.34 It was not possible to discern whether safrole was present in low concentration, because the equipment cannot resolve the safrole peak from anethole, when such high concentrations of anethole are present.24 GC analysis of patient 5 samples was able to detect eugenol; however, anethole, again, was found in high concentrations, preventing the identification of safrole. The volatile compound profile in patient 6 was significantly different from that of patients 5 and 7 as a result of the presence of safrole and eugenol with a low concentration of anethole. The 3 samples purchased from local stores showed GC spectra similar to patient 7.34

Liquid chromatography analysis of the sesquiterpene lactone fraction of each sample was performed for the presence of anisatin and neoanisatin in addition to veranisatins A, B, and C. The mass spectral pattern of each sample was similar in the number of compounds, type of compounds, and concentration of each.34 Sesquiterpene lactone extracts from patient 6 only faintly resembled the other sample spectra in compound distribution or concentration, suggesting the presence of another Illicium species besides I verum.34

DISCUSSION

Several reports documenting clear instances of clinical toxicity with star anise have been described. Montoya-Cabrera35 reported the frequent use of Chinese star anise in Mexico and described the appearance of similar neurologic symptoms. Johanns et al4 reported 63 adults who experienced symptoms of general malaise, nausea, and vomiting 2 to 4 hours after consuming an herbal tea of star anise. Twenty-two of the subjects required hospitalization, and 16 experienced generalized seizures. Vandenberghe et al5 reported a 23-year-old man who experienced headache and epigastric pain 4 hours after ingesting 3 glasses of “vin chaude” prepared with star anise. Eight hours later, he developed generalized tonic-clonic seizures. Guerrero Fernandez et al36 from Spain reported 9 infants aged 5 to 45 days with excessive crying, irritability, and vertical nystagmus after ingesting Chinese star anise tea. Physical examination, electroencephalogram, and neuroimaging studies were normal in all patients. Another group from Spain reported a series of 18 infants with irritability, abnormal movements, vomiting, and nystagmus after receiving star anise tea and found evidence of contamination of I verum with I anisatum.3

Our patients presented with evidence of central nervous system hyperexcitability including jitteriness, irritability, sleeplessness, and seizures. Although these symptoms are nonspecific and can occur in response to ingestion of substances other than Chinese star anise, the history of recent star anise ingestion and the known effects of its administration strongly implicate star anise as the cause. The speed of recovery is also indicative of a pharmacologic source given the resolution of all symptoms within 48 hours after appropriate symptomatic and supportive care.

I verum has been considered safe as a food or medicine because it contains veranisatins in low concentrations. However, significant quantities in infants may be enough to produce adverse neurologic reactions. On the basis of the results of our chemical analysis, the symptoms that we describe in this report may be attributed to an overdose of I verum, contamination with I anisatum, or a combination of the two. It is worth noting that the material from patient 6, the sample most clearly indicative of adulteration with I anisatum, is associated with the fewest doses and fastest onset of convulsive symptoms.

The ingestion of star anise should be considered in the differential diagnosis of infants who present with the acute onset of unexplained irritability, vomiting, and seizures, particularly in the Latino population. Although the cases that we report here are associated with members of the Cuban and Central and South American population of southern Florida, star anise is widely used by all Latino groups. On the basis of these cases and the finding of contamination of I verum in the United States, we strongly believe that star anise should no longer be administered to infants. Pursuant to our findings, the Food and Drug Administration has recently issued a warning for consumers not to drink teas that are brewed from star anise fruits. The retail of star anise products in the United States warrants additional investigation and stricter federal regulation given the neurotoxic effects of the adulterated product and the potential danger to infants and children.

GC-MS, gas chromatography–mass spectroscopy

REFERENCES

  1. ↵
    Read BE. Bastard anise poisoning and its antidotal measures. Chinese J Physiol.1926;1 :15– 22
    OpenUrl
  2. Biessels GJ, Vermeij FH, Leijten FS. Epileptic seizure after a cup of tea: intoxication with Japanese star anise. Ned Tijdschr Geneeskd.2002;146 :808– 811
    OpenUrlPubMed
  3. ↵
    Garzo Fernandez C, Gomez Pintado P, Barrasa Blanco A, Martinez Arrieta R, Ramirez Fernandez R, Ramon Rosa F. [Cases of neurological symptoms associated with star anis consumption used as a carminative.] An Esp Pediatr.2002;57 :290– 294
    OpenUrlPubMed
  4. ↵
    Johanns ES, van der Kolk LE, van Gemert HM, Sijben AE, Peters PW, de Vries I. An epidemic of epileptic seizures after consumption of herbal tea. Ned Tijdschr Geneeskd.2002;146 :813– 816
    OpenUrlPubMed
  5. ↵
    Vandenberghe N, Pittion-Vouyouvitch S, Flesch F, Wagner M, Godet E. An inaugural generalized tonic-clonic convulsive crisis following ingestion of Japanese star anise. Presse Med.2003;32 :27– 28
    OpenUrlPubMed
  6. ↵
    Liu JS, Zhou QR. The toxic principle of Illicium henryi Diels and structure of 6-deoxypseudoanisatin. Yaoxue Xuebao.1988;23 :221– 223
    OpenUrl
  7. Kouno I, Baba N, Hasimoto M, et al. Isolation of three new sesquiterpene lactones from the pericarps of Illicium majus. Chem Pharm Bull.1989;37 :2448– 451
    OpenUrl
  8. Yang CS, Wang JL, Zhang ZL, Kouno I. Studies on the toxic constituents of Illicium simonsii Maxim. Yaoxue Xuebao.1991;26 :128– 131
    OpenUrl
  9. Wang JY, C.S. Yan, R.N. Yao, B. Yang, X.B. Sesquiterpene lactones from Illicium minwanense. Yaoxue Xuebao.1994;29 :693– 696
    OpenUrl
  10. Schmidt TJ, Schmidt HM, Muller E, et al. New sesquiterpene lactones from Illicium floridanum. J Nat Prod.1998;61 :230– 236
    OpenUrlCrossRefPubMed
  11. Schmidt TJ, Okuyama E, Fronczek FR. The molecular structure of 2-gammahydroxyneoanisatin and structure-activity relationships among convulsant sesquiterpenes of the seco-prezizaane and picrotoxane types. Bioorg Med Chem.1999;7 :2857– 2865
    OpenUrlCrossRefPubMed
  12. ↵
    Huang JM, Fukuyama Y, Yang CS, Minami H, Tanaka M. Three new sesquiterpene lactones from the pericarps of Illicium merrillianum.Chem Pharm Bull (Tokyo).2000;48 :657– 659
    OpenUrlPubMed
  13. ↵
    Yamada K, Takada S, Nakamura S, Hirata Y. The structures of anisatin and neoanisatin: toxic sesquiterpenes from Illicium anisatum L. Tetrahedron.1968;24 :199– 229
    OpenUrlCrossRef
  14. ↵
    Kouno I, Mori K, Akiyama T, Hashimoto M. Two sesquiterpene lactones from Illicium anisatum. Phytochemistry.1991;30 :351– 353
    OpenUrlCrossRef
  15. ↵
    Okuyama E, Nakamura T, Yamazaki M. Convulsants from star anise (Illicium verum Hook. F.). Chem Pharm Bull (Tokyo).1993;41 :1670– 1671
    OpenUrlPubMed
  16. ↵
    Kudo Y, Oka JI, Yamada K. Anisatin, a potent GABA antagonist, isolated from Illicium anisatum. Neurosci Lett.1981;25 :83– 88
    OpenUrlCrossRefPubMed
  17. Shinozaki H, Ishida M, Kudo Y. Effects of anisatin on the GABA action in the crayfish neuromuscular junction. Brain Res.1981;222 :401– 405
    OpenUrlCrossRefPubMed
  18. Matsumoto K, Fukuda H. Anisatin modulation of GABA- and pentobarbital-induced enhancement of diazepam binding in rat brain. Neurosci Lett.1982;32 :175– 179
    OpenUrlCrossRefPubMed
  19. Ikeda T, Ozoe Y, Okuyama E, et al. Anisatin modulation of the gammaaminobutyric acid receptor-channel in rat dorsal root ganglion neurons. Br J Pharmacol.1999;127 :1567– 1576
    OpenUrlCrossRefPubMed
  20. ↵
    Ikeda T. Electrophysiological study of the mechanism of action of insecticides activity on ion channels. Nippon Noyaku Gakkaishi.2002;27 :310– 319
    OpenUrl
  21. ↵
    Badiane et risque convulsive. L'Agence française de sécurité sanitaire des produits de santé (Afssaps); 2001. Available at: agmed.sante.gouv.fr/htm/10/filcoprs/011103c.htm. Accessed April 22, 2003
  22. Mise en évidence de la contamination de la badiane de Chine (Illicium verum Hoocker f.) par d'autres espèces de badiane. Laboratoires de la DGCCRF. Marselle, France; 2003. Available at: www.finances.gouv.fr/DGCCRF/activites/labos/2001/badiane.htm. Accessed April 22, 2003
  23. ↵
    2002/75/EC: Commission Decision of 1 February 2002 laying down special conditions on the import from third countries of star anise (text with EEA relevance) (notified under document number C(2002) 379). Off J Eur Commun.2002;L :33– 34
    OpenUrl
  24. ↵
    Sun L. Studies on the chemical constituents of the volatile oil of Illicium verum Hook. f. grown in Shangyou. Youji Huaxue.1990;10 :183– 186
    OpenUrl
  25. Jiang Z, Li R. Aroma constituents of Illicium verum-containing condiment oil. Shipin Kexue.1992;156 :2– 10
    OpenUrl
  26. Quoc Tuan D, Ilangantileke SG. Liquid CO2 extraction of essential oil from star anise fruits (Illicium verum Hook. f.). J Food Eng.1996;31 :47– 57
    OpenUrl
  27. Yan J, Xiao X, Huang K. Component analysis of volatile oil from Illicium verum Hook. F. J Central South Univ Technol (English Ed).2002;9 :173– 176
    OpenUrl
  28. ↵
    Small J. Star anise. Food.1943;12 :97– 100
    OpenUrl
  29. ↵
    Agarwal SK, Siddiqui MS, Jain SP, Sushil-Kumar, Kumar S. Chemotaxonomical study of Indian Illicium griffithii and Illicium verum fruits. J Medicinal Aromatic Plant Sci.1999;21 :945– 946
    OpenUrl
  30. ↵
    Saltron F, Langella C, Guerere M. Detection of contamination of Chinese star anise by other Illicium species. Ann Fals Expert Chim Toxicol.2001;94 :397– 402
    OpenUrl
  31. ↵
    Niwa H, Tsukada I, Nisiwaki M, Yamada K. Further chemical studies on anisatin, a neurotoxic sesquiterpenoid having a β-lactone. Bull Chem Soc Jpn.1991;64 :2860– 2862
    OpenUrlCrossRef
  32. Niwa H, Yamada K. Synthesis of anisatin, a neurotoxin of plant origin. Farumashia.1991;27 :924– 927
    OpenUrl
  33. ↵
    Niwa H, Yamada K. Synthesis of (−)-neoanisatin, a neurotoxic sesquiterpenoid having a novel spiro β-lactone. Chem Lett.1991;4 :639– 640
    OpenUrlCrossRef
  34. ↵
    Ize-Ludlow D, Ragone S, Bruck I, Bernstein J, Duchowny M, Garcia Pena B. Chemical composition of Chinese star anise (Illicium verum) and neurotoxicity in infants. JAMA.2004;291 :562– 563
    OpenUrlCrossRefPubMed
  35. ↵
    Montoya-Cabrera MA. Poisoning by star anise (Illicium verum) tea. Gac Med Mex.1990;126 :341– 342
    OpenUrlPubMed
  36. ↵
    Guerrero Fernandez J, Valle Sanchez A, Garcia Garcia S. Nueve casos de intoxicacion por anis estrellado. Rev Esp Pediatr.2002;58 :111– 114
    OpenUrl
  • Copyright © 2004 by the American Academy of Pediatrics
PreviousNext
Back to top

Advertising Disclaimer »

In this issue

Pediatrics
Vol. 114, Issue 5
1 Nov 2004
  • Table of Contents
  • Index by author
View this article with LENS
PreviousNext
Email Article

Thank you for your interest in spreading the word on American Academy of Pediatrics.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Neurotoxicities in Infants Seen With the Consumption of Star Anise Tea
(Your Name) has sent you a message from American Academy of Pediatrics
(Your Name) thought you would like to see the American Academy of Pediatrics web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Request Permissions
Article Alerts
Log in
You will be redirected to aap.org to login or to create your account.
Or Sign In to Email Alerts with your Email Address
Citation Tools
Neurotoxicities in Infants Seen With the Consumption of Star Anise Tea
Diego Ize-Ludlow, Sean Ragone, Isaac S. Bruck, Jeffrey N. Bernstein, Michael Duchowny, Barbara M. Garcia Peña
Pediatrics Nov 2004, 114 (5) e653-e656; DOI: 10.1542/peds.2004-0058

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Neurotoxicities in Infants Seen With the Consumption of Star Anise Tea
Diego Ize-Ludlow, Sean Ragone, Isaac S. Bruck, Jeffrey N. Bernstein, Michael Duchowny, Barbara M. Garcia Peña
Pediatrics Nov 2004, 114 (5) e653-e656; DOI: 10.1542/peds.2004-0058
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Print
Download PDF
Insight Alerts
  • Table of Contents

Jump to section

  • Article
    • Abstract
    • METHODS
    • RESULTS
    • DISCUSSION
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Comments

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Cerebral Lymphoma in an Adenosine Deaminase–Deficient Patient With Severe Combined Immunodeficiency Receiving Polyethylene Glycol–Conjugated Adenosine Deaminase
  • Disparate Clinical Presentation of Neonatal Hemochromatosis in Twins
  • Efficacy and Safety of Modafinil Film–Coated Tablets in Children and Adolescents With Attention-Deficit/Hyperactivity Disorder: Results of a Randomized, Double-Blind, Placebo-Controlled, Flexible-Dose Study
Show more ELECTRONIC ARTICLES

Similar Articles

Subjects

  • Pharmacology
    • Pharmacology
  • Fetus/Newborn Infant
    • Fetus/Newborn Infant
  • Journal Info
  • Editorial Board
  • Editorial Policies
  • Overview
  • Licensing Information
  • Authors/Reviewers
  • Author Guidelines
  • Submit My Manuscript
  • Open Access
  • Reviewer Guidelines
  • Librarians
  • Institutional Subscriptions
  • Usage Stats
  • Support
  • Contact Us
  • Subscribe
  • Resources
  • Media Kit
  • About
  • International Access
  • Terms of Use
  • Privacy Statement
  • FAQ
  • AAP.org
  • shopAAP
  • Follow American Academy of Pediatrics on Instagram
  • Visit American Academy of Pediatrics on Facebook
  • Follow American Academy of Pediatrics on Twitter
  • Follow American Academy of Pediatrics on Youtube
  • RSS
American Academy of Pediatrics

© 2021 American Academy of Pediatrics