Probiotic Effects on Late-onset Sepsis in Very Preterm Infants: A Randomized Controlled Trial

AUTHORS: Susan E. Jacobs, MD, Jacinta M. Tobin, PhD, Gillian F. Opie, MBBS, Susan Donath, MA, Sepehr N. Tabrizi, PhD, Marie Pirotta, PhD, Colin J. Morley, MD, and Suzanne M. Garland, MD, for the ProPrems Study Group

KEY WORDS
probiotics, sepsis, necrotizing enterocolitis, infant, preterm

ABBREVIATIONS
CI—confidence interval
CoNS—coagulase-negative staphylococci
NEC—necrotizing enterocolitis
RCT—randomized controlled trial
RR—relative risk

BACKGROUND AND OBJECTIVE: Late-onset sepsis frequently complicates prematurity, contributing to morbidity and mortality. Probiotics may reduce mortality and necrotizing enterocolitis (NEC) in preterm infants, with unclear effect on late-onset sepsis. This study aimed to determine the effect of administering a specific combination of probiotics to very preterm infants on culture-proven late-onset sepsis.

METHODS: A prospective multicenter, double-blinded, placebo-controlled, randomized trial compared daily administration of a probiotic combination (Bifidobacterium infantis, Streptococcus thermophilus, and Bifidobacterium lactis) to very preterm infants born before 32 completed weeks’ gestation weighing <1500 g. The primary outcome was at least 1 episode of definite late-onset sepsis.

RESULTS: Between October 2007 and November 2011, 1099 very preterm infants from Australia and New Zealand were randomized. Rates of definite late-onset sepsis (16.2%), NEC of Bell stage 2 or more (4.4%), and mortality (5.1%) were low in controls, with high breast milk feeding rates (96.9%). No significant difference in definite late-onset sepsis or all-cause mortality was found, but this probiotic combination reduced NEC of Bell stage 2 or more (2.0% versus 4.4%, relative risk 0.46, 95% confidence interval 0.23 to 0.93, \(P = .03 \); number needed to treat 43, 95% confidence interval 23 to 333).

CONCLUSIONS: The probiotics B infantis, S thermophilus, and B lactis significantly reduced NEC of Bell stage 2 or more in very preterm infants, but not definite late-onset sepsis or mortality. Treatment with this combination of probiotics appears to be safe. *Pediatrics* 2013;132:1055–1062
Late-onset sepsis occurring more than 48 hours after birth is a frequent complication of prematurity and is associated with significant mortality and morbidity. In 2009, the Australian and New Zealand Neonatal Network reported late-onset sepsis in 15.7% of infants born at <32 weeks and weighing <1500 g.1 A recent large study from 313 North American NICUs reported an overall mortality of 15.1% in infants born <1500 g diagnosed with late-onset sepsis, compared with 8.5% in infants assessed for sepsis in whom cultures were negative.2 In contrast to term infants, preterm infants largely acquire their colonizing flora and may predispose very preterm infants to both late-onset sepsis and necrotizing enterocolitis (NEC).3,4

Probiotics are live microorganisms that when administered in adequate numbers confer health benefits.6 Probiotic effects are dose, condition, and strain-specific.7 Meta-analyses and systematic reviews of randomized controlled trials (RCTs) of a variety of different probiotic strains and combinations administered to preterm infants of varying gestational ages and birth weights report a significant reduction in NEC and all-cause mortality, but not late-onset sepsis.8–12 However, RCTs that reported late-onset sepsis were limited by lack of power and inconsistent definitions of late-onset sepsis.13,14 We therefore designed a trial to evaluate the effect of a combination of 3 probiotics administered daily to very preterm infants on the incidence of definite late-onset sepsis.15

METHODS

Patients and Study Design

The ProPrems trial was a prospective, multicentered, double-blind, placebo-controlled, randomized trial in which supplementing very preterm infants with probiotics was compared with placebo. The trial was conducted in perinatal hospitals in Australia (n = 8) and New Zealand (n = 2) and approved by the Human Research Ethics Committees at each center. Written informed consent was obtained from parents or guardians within 72 hours of birth.

Infants, born <32 completed weeks’ gestation and weighing <1500 g, were eligible for enrollment within 72 hours of birth. Infants were excluded if they had major congenital or chromosomal anomalies, if death was considered likely within 72 hours of birth, or if the mother was taking nonnondietary probiotic supplements.

Randomization

The Clinical Epidemiology and Biostatistics Unit at the Murdoch Children’s Research Institute, who were independent of the study investigators, constructed the randomization sequence using Stata 9.0 (Stata Corp, College Station, TX) statistical software. Randomization was stratified by center, allocation was 1:1 and random block sizes of 2, 4, and 6 were used. Infants from multiple births were randomized individually. This schedule was provided to the pharmacist at RWH the Royal Women’s Hospital who made up individual bottles for each randomized infant, coded by sequential study number. Apart from the pharmacist, all staff and parents were blinded to the randomized allocation.

Study Intervention

The intervention was the probiotic combination Bifidobacterium infantis (BB–02 300 × 10^6), Streptococcus thermophilus (TH–4 350 × 10^6) and Bifidobacterium lactis (BB–12 350 × 10^6) (ABC Dophilus Probiotic Powder for Infants, Solgar, Leonia, New Jersey) with 1 × 10^9 total organisms per 1.5 g, in a maltodextrin base powder. This is registered with the Deutsche Sammlung von Mikroorganismen und Zellkulturen (German Collection of Microorganisms and Cell Cultures) as BB-12 15954, BB-02 96579, TH-4 15957. It was the only probiotic combination available at the time that had been previously evaluated in preterm infants.14 It was imported under license from the Australian Therapeutic Goods Administration Clinical Trial Notification Scheme. Taxonomy and quality of the probiotic organisms were confirmed independently. The placebo was maltodextrin powder (Professional Compounding Chemists of Australia, Sydney, Australia and/or Biotech Pharmaceuticals, Melbourne, Australia), identical in color and texture to the probiotic powder. Each new batch of probiotic and maltodextrin powder was analyzed for the presence and quantitation of the probiotic organisms with real-time polymerase chain reaction techniques (as they are not cultivatable readily by standard microbiological methods), and for purity using standard microbiological culture techniques. Polymerase chain reaction on fecal specimens confirmed colonization with ingested probiotic strains. The intervention was administered only when an infant was receiving at least 1 mL of milk every 4 hours. The intervention was withheld during periods when infants were nil orally. The daily dose was two 1-mL spoons (levelled by a wooden spatula), equivalent to 1.5 g of study powder, reconstituted with 3 mL breast milk or formula. When an infant received <3 mL milk per feed,
one 1-mL spoon of powder was mixed with 1.5 mL milk and given twice daily. The dose was the same irrespective of the infant’s current weight or postnatal age and was administered daily by gastric tube or mouth, until discharge from hospital or term corrected age.

Primary and Secondary Outcomes

The primary outcome was the incidence of at least 1 episode of definite late-onset sepsis before 40 weeks’ postmenstrual age or discharge home, whichever occurred first. An episode of late-onset sepsis was defined as either the first episode >48 hours after birth, or a subsequent episode occurring ≥72 hours after antibiotic treatment was stopped.

Definite sepsis was diagnosed when a pathogen was isolated from blood, urine (suprapubic aspirate or catheter specimen), or cerebrospinal fluid, and the infant was treated with antibiotics for ≥5 days, or a postmortem culture of organ tissue grew a pathogen with concomitant histology of infection. When coagulase-negative staphylococcal species (CoNS) were isolated from blood, definite sepsis was diagnosed either when there were 2 time-separated cultures of the same species and the infant had been treated with antibiotics for ≥5 days, or when a single CoNS species was isolated in association with raised blood markers of sepsis (C-reactive protein more than 10 mg/L and/or immature to total neutrophil ratio more than 0.2), and treatment with ≥5 days of antibiotics.

Clinical sepsis was diagnosed either when a blood culture was negative, but the C-reactive protein was >10 mg/L and/or the immature-to-total neutrophil ratio was >0.2 and the infant was treated with antibiotics for ≥5 days.

Secondary outcomes were the incidence of definite or clinical late-onset sepsis, as well as the composite outcome of definite or clinical late-onset sepsis, the number of courses and duration of antibiotic treatment, the incidence of definite sepsis with a probiotic species, mortality, the incidence of NEC and NEC Bell stage 2 or greater, duration of primary hospitalization and intravenous nutrition, time to enteral feeds of 120 mL/kg per day for ≥3 days, breast milk feeding rates, days to regain birth weight, weight at 28 days of age and at discharge, patent ductus arteriosus treated with either medication or surgery, intraventricular hemorrhage grade 3 or 4, or cystic periventricular leukomalacia, retinopathy of prematurity ≥grade 3, oxygen treatment and/or respiratory support at 28 days of life and at 36 weeks’ postmenstrual age.

Sample Size and Statistical Analysis

The sample size was estimated on the baseline rate of 23% of at least 1 episode of late-onset sepsis in infants born <32 weeks’ gestation and <1500 g from the Australian and New Zealand Neonatal Network database in 2003. A 33% reduction was considered clinically important; therefore, 1100 infants (550 per arm) were required to have at least 80% power to detect a difference of 7% (23% vs 16%) between the 2 groups with a 0.05 2-sided significance level. Differences between the 2 study groups were assessed using χ^2 and 95% confidence intervals (CIs) of relative risk (RR) for the primary outcome and other categorical outcome variables, tests, and 95% CI of difference of means for continuous unskewed outcome variables, and rank-sum tests for continuous outcome measures with skewed distributions. Main analysis was by intention to treat. Subgroup analyses were undertaken within prespecified gestational age strata (<28 weeks) and birth weight (<1000 g) for predefined outcomes, definite late-onset sepsis, and NEC ≥Bell stage 2, with logistic regression used to assess evidence for interaction between treatment and subgroup. For the primary and main secondary outcomes, intention-to-treat analyses using logistic regression adjusting for stratification factor (site), gestational age <28 weeks, gender, and commencement of study powder before day 7 of life, as well as per-protocol analyses excluding infants who did not receive the allocated intervention were also performed. Stata version 12.1 (Stata Corp) was used for all analyses.

The independent Data Monitoring Committee assessed interim analyses of prespecified outcomes, late-onset sepsis, NEC, and mortality, and adverse events after 100, 200, 350, and 700 enrolled infants had reached term.

The trial is registered with the Australia and New Zealand Clinical Trials Register, number ACTRN12607000144415.

RESULTS

Between October 5, 2007, and November 11, 2011, 2520 infants born <32 weeks’ gestation weighing <1500 g were assessed for eligibility, with 1099 infants enrolled from 10 centers and randomized to the probiotics group ($n = 548$) or the control group ($n = 551$) (Fig 1). The baseline characteristics of the 2 groups are shown in Table 1.

There was no significant difference in the number of infants with at least 1 episode of definite late-onset sepsis (13.1% vs 16.2%; RR 0.81; (95% CI 0.61 to 1.08), $P = .16$) with the probiotic combination (Table 2). This was unchanged when the analysis was adjusted for the prespecified confounding variables. In the planned subgroup analyses, there was a differential effect on late-onset sepsis for gestational age (P value for interaction .03), but not for birth weight ($P = .24$). A significant reduction in definite late-onset sepsis was seen in the probiotic subgroup ≥28 weeks’ gestation, but not for those <28 weeks.
There was no difference in the number of episodes of definite late-onset sepsis between the groups, or between groups in the number of episodes where conventional pathogens or CoNS as pathogens were isolated (Table 2). There was also no difference in the number of infants with clinical late-onset sepsis, the number with the composite outcome of clinical or definite sepsis, or in the number of episodes of clinical sepsis. There were no episodes of definite late-onset sepsis with the administered probiotic species B infantis, S thermophilus, and B lactis.

NEC of Bell stage 2 or more was significantly reduced in the probiotic group compared with controls (NEC of Bell stage 2 or more 2.0% vs 4.4%; RR 0.46; 95% CI 0.23 to 0.93; \(P = .03 \)), an absolute risk reduction of 2.4%, and number needed to treat of 43 (95% CI 23 to 333) (Table 3). This remained significant after logistic regression adjusting for stratification (site) and confounding variables. In the subgroup analysis for NEC of Bell stage 2 or more, there was no significant differential effect of the probiotic combination for birth weight (\(P \) value for interaction .08); these subgroup results are therefore presented without \(P \) values. A \(P \) value for interaction for gestation could not be estimated, as the number of NEC cases in the \(\geq 28 \) weeks subgroup was too small. The composite outcome of mortality or NEC of Bell stage 2 or more was not significantly different between groups. There was no significant difference found in all-cause mortality between the groups during the study period, or the primary hospitalization (Table 3). There were no significant differences in mortality from NEC of Bell stage 2 or more or definite late-onset sepsis. No significant differences were found in duration of intravenous nutrition or in days to establish full enteral feeds between the groups. More than 95% of the infants received breast milk (Table 3). The probiotic group weighed 48.9 g more at 28 days of life than the controls, but there was no significant difference at hospital discharge. There was no significant difference in duration of hospitalization between the groups, or any neonatal morbidities, including oxygen treatment or respiratory support at 36 weeks’ postmenstrual age (Table 4).

DISCUSSION

This large, multicenter, RCT in Australia and New Zealand found no significant effect of the probiotic combination B infantis, S thermophilus, and B lactis on definite late-onset sepsis in preterm infants born at <32 weeks’ gestation weighing <1500 g. This was true for culture-proven sepsis with either conventional pathogens or CoNS species, as well as for clinical late-onset sepsis. Although a statistically significant reduction in NEC of Bell stage 2 or more was found in the probiotic group, the absolute reduction was only 2.4%. The study was not powered to detect a differential NEC reduction by birth weight or gestation; although we found an apparent benefit in NEC prevention in the groups that weighed \(\geq 1000 \) g and were

TABLE 1 Baseline Characteristics

<table>
<thead>
<tr>
<th>Probiotic Group, (n = 548)</th>
<th>Control Group, (n = 551)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational age, wk, mean (SD)</td>
<td>27.9 (2.0)</td>
</tr>
<tr>
<td>(<28) wk, n (%)</td>
<td>219 (40.0)</td>
</tr>
<tr>
<td>Birth weight, g, mean (SD)</td>
<td>1063 (258)</td>
</tr>
<tr>
<td>(<1000) g, n (%)</td>
<td>235 (42.9)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>272 (49.6)</td>
</tr>
<tr>
<td>5-min Apgar score, median (IQR)</td>
<td>8 (7–9)</td>
</tr>
<tr>
<td>Multiple births, n (%)</td>
<td>197 (35.9)</td>
</tr>
<tr>
<td>Antenatal steroids (any), n (%)</td>
<td>502 (91.6)</td>
</tr>
<tr>
<td>Maternal antibiotics, n (%)</td>
<td>262 (47.8)</td>
</tr>
<tr>
<td>Maternal infection (chorioamnionitis), n (%)</td>
<td>47 (8.6)</td>
</tr>
<tr>
<td>Cesarean delivery, n (%)</td>
<td>359 (65.5)</td>
</tr>
<tr>
<td>Age at enrollment, d, mean (SD)</td>
<td>2.0 (0.9)</td>
</tr>
<tr>
<td>Age commenced study powder, d, median (IQR)</td>
<td>5 (4–7)</td>
</tr>
</tbody>
</table>

IQR, interquartile range (25–75).
our study suggests a difference of this probiotic combination used on late-onset sepsis and mortality in this trial is related to the choice of probiotic combination, probiotic strains or dose used, or that probiotics were not started on the first day of life, the finding that probiotic supplementation with B infantis, S thermophilus, and B lactis is beneficial to our very preterm infants by reducing NEC of Bell stage 2 or more may negate these factors. Moreover, no one has determined which is the most effective probiotic, combination of probiotics, when they should be started, what dosage should be used, or the duration of administration.24–37

No significant adverse effects of the probiotics B infantis, S thermophilus, and B lactis were found in this trial. In particular, there were no episodes of definite late-onset sepsis from the

TABLE 2 Late-onset Sepsis Outcomes

<table>
<thead>
<tr>
<th>Primary outcome</th>
<th>Probiotic Group, n = 548</th>
<th>Control Group, n = 551</th>
<th>RR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infants with at least 1 episode of definite late-onset sepsis, n (%)</td>
<td>72 (13.1)</td>
<td>89 (16.2)</td>
<td>0.81 (0.61 to 1.08)</td>
<td>.16</td>
</tr>
</tbody>
</table>

Subgroup analyses:

- **Gestational age:**
 - <28 wk, n (%): 54 (24.7) vs 55 (23.4) (1.05 (0.76 to 1.46) .75
 - ≥28 wk, n (%): 18 (5.5) vs 34 (10.8) (0.51 (0.29 to 0.88) .01
 - Birth weight:
 - <1000 g, n (%): 53 (22.6) vs 58 (24.3) (0.83
 - ≥1000 g, n (%): 19 (6.1) vs 31 (9.9) (0.61

Secondary outcomes:

- Infants with at least 1 episode of definite late-onset sepsis with pathogens, n (%): 38 (8.9) vs 48 (8.7) (0.80 (0.53 to 1.20) .27
- Infants with at least 1 episode of definite late-onset sepsis with CoNS, n (%): 40 (7.3) vs 43 (7.8) (0.94 (0.62 to 1.42) .75
- Infants with at least 1 episode of definite late-onset sepsis with probiotic species, n (%): 0 vs 0
- Infants with clinical late-onset sepsis, n (%): 75 (13.7) vs 83 (15.1) (0.91 (0.68 to 1.21) .52
- Infants with late-onset sepsis (definite or clinical), n (%): 129 (23.5) vs 146 (26.5) (0.89 (0.72 to 1.09) .26
- Courses of antibiotics, median (IQR): 1 (0–1) vs 1 (0–1) (1.78
- Days of antibiotic treatment, median (IQR): 2 (0–7) vs 2 (0–8) (0.64

Late-onset sepsis >48 h after birth and before discharge home or term postmenstrual age.

Pathogens isolated included the following:

- Staphylococcus aureus (n = 21), Escherichia coli (n = 20), Group B Streptococcus (n = 11), Enterococcus faecalis (n = 10), Klebsiella spp (n = 7), Enterobacter spp (n = 6), Candida spp (n = 5), Pseudomonas aeruginosa (n = 4), Pseudomonas spp (n = 2), Stenotrophomonas maltophilia (n = 2), Serratia spp (n = 2), Enterococcus spp (n = 1), Bacillus cereus (n = 1), Clostridium perfringens (n = 1), group A Streptococcus (n = 1), Streptococcus viridans (n = 1). Coagulase-negative Staphylococcus spp (CoNS spp) (n = 87; not speciated CoNS (n = 57)). Staphylococcus epidermidis (n = 24), Staphylococcus capitis (n = 5), Staphylococcus warneri (n = 1). IQR, interquartile range (25–75).

* Interaction P value.
TABLE 3 Other Secondary Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Probiotic Group, n = 548</th>
<th>Control Group, n = 551</th>
<th>RR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEC (Bell stage 2 or more), n (%)</td>
<td>11 (2.0)</td>
<td>24 (4.4)</td>
<td>0.48 (0.23 to 0.93)</td>
<td>.03</td>
</tr>
<tr>
<td>Subgroup analyses:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestational age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><28 wk, n (%)</td>
<td>11 (5.0)</td>
<td>17 (7.2)</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>≥28 wk, n (%)</td>
<td>0</td>
<td>7 (2.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1000 g, n (%)</td>
<td>10 (4.3)</td>
<td>14 (5.9)</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>≥1000 g, n (%)</td>
<td>1 (0.3)</td>
<td>10 (3.2)</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Age at NEC (Bell stage 2 or more), d, median (IQR)</td>
<td>20.5 (15.5–34.5)</td>
<td>21 (17.0–30.5)</td>
<td>.99</td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death, n (%)</td>
<td>27 (4.9)</td>
<td>28 (5.1)</td>
<td>0.97 (0.58 to 1.62)</td>
<td>.91</td>
</tr>
<tr>
<td>Age at death, d, mean (SD)</td>
<td>21.7 (18.5)</td>
<td>23.3 (16.7)</td>
<td>.75</td>
<td></td>
</tr>
<tr>
<td>Death during hospitalization, n (%)</td>
<td>30 (5.5)</td>
<td>31 (5.8)</td>
<td>0.97 (0.80 to 1.58)</td>
<td>.91</td>
</tr>
<tr>
<td>Age at death during hospitalization, d, median (IQR)</td>
<td>21 (7–40)</td>
<td>24.5 (10–42–5)</td>
<td>.49</td>
<td></td>
</tr>
<tr>
<td>Causes of death, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late-onset sepsis</td>
<td>6 (1.1)</td>
<td>4 (0.7)</td>
<td>1.55 (0.43 to 5.32)</td>
<td>.52</td>
</tr>
<tr>
<td>NEC</td>
<td>4 (0.7)</td>
<td>11 (2.0)</td>
<td>0.37 (0.12 to 1.14)</td>
<td>.07</td>
</tr>
<tr>
<td>Composite of death or NEC (Bell stage 2 or more), n (%)</td>
<td>33 (6.0)</td>
<td>41 (7.4)</td>
<td>0.81 (0.52 to 1.26)</td>
<td>.35</td>
</tr>
<tr>
<td>Other secondary outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of primary hospital admission, d, median (IQR)</td>
<td>71 (54–92)</td>
<td>74 (58–93)</td>
<td>.09</td>
<td></td>
</tr>
<tr>
<td>Duration on parenteral nutrition, d, median (IQR)</td>
<td>12 (6–17)</td>
<td>12 (6–18)</td>
<td>.29</td>
<td></td>
</tr>
<tr>
<td>Days to full enteral feeds, median (IQR)</td>
<td>12 (9–16)</td>
<td>12 (10–17)</td>
<td>.31</td>
<td></td>
</tr>
<tr>
<td>Days to regain birth weight, mean (SD)</td>
<td>11.1 (4.5)</td>
<td>11.7 (4.8)</td>
<td>−0.5 (−1.1 to 0)</td>
<td>.06</td>
</tr>
<tr>
<td>Weight at 28 d, g, mean (SD)</td>
<td>1485.0 (641.2)</td>
<td>1446.0 (379.2)</td>
<td>48.9 (2.0 to 95.9)</td>
<td>.04</td>
</tr>
<tr>
<td>Weight at discharge, g, mean (SD)</td>
<td>2870.7 (748.8)</td>
<td>2865.0 (738.9)</td>
<td>6.5 (−94.2 to 97.2)</td>
<td>.89</td>
</tr>
<tr>
<td>Any breast milk, n (%)</td>
<td>520 (95.6)</td>
<td>532 (98.9)</td>
<td>0.99 (0.86 to 1.01)</td>
<td>.25</td>
</tr>
<tr>
<td>Exclusive breast milk at discharge home, n (%)</td>
<td>298 (51.6)</td>
<td>292 (56.5)</td>
<td>0.91 (0.82 to 1.02)</td>
<td>.11</td>
</tr>
<tr>
<td>Any breast milk at discharge home, n (%)</td>
<td>370 (71.7)</td>
<td>379 (73.3)</td>
<td>0.98 (0.91 to 1.05)</td>
<td>.56</td>
</tr>
</tbody>
</table>

Secondary outcomes during study period (before discharge or term postmenstrual age, whichever occurs sooner), unless specified otherwise. IQR, interquartile range (25–75).

* Interaction P value unable to be calculated.

& Interaction P value.

administered probiotic strains. This is similar to other probiotic trials, although isolated cases of probiotic sepsis in NICU infants have been reported.\

TABLE 4 Morbidities

<table>
<thead>
<tr>
<th></th>
<th>Probiotic Group, n = 548</th>
<th>Control Group, n = 551</th>
<th>RR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDA treated, n (%)</td>
<td>159 (29)</td>
<td>171 (31)</td>
<td>0.85 (0.78 to 1.12)</td>
<td>.47</td>
</tr>
<tr>
<td>IVH grade 3 or 4 or cystic PVL, n (%)</td>
<td>22 (4.0)</td>
<td>16 (2.9)</td>
<td>1.38 (0.73 to 2.60)</td>
<td>.31</td>
</tr>
<tr>
<td>ROP = grade 3, n (%)</td>
<td>28 (5.1)</td>
<td>30 (5.4)</td>
<td>0.94 (0.57 to 1.55)</td>
<td>.80</td>
</tr>
<tr>
<td>CLD at 28 d, n (%)</td>
<td>281 (53.1)</td>
<td>284 (53.3)</td>
<td>1.0 (0.88 to 1.12)</td>
<td>.96</td>
</tr>
<tr>
<td>BPD at 36 wk, n (%)</td>
<td>165 (31.6)</td>
<td>161 (30.7)</td>
<td>1.03 (0.86 to 1.23)</td>
<td>.74</td>
</tr>
</tbody>
</table>

BPD, bronchopulmonary dysplasia; CLD, chronic lung disease; IVH, intraventricular hemorrhage; PDA, patent ductus arteriosus; PVL, periventricular leukomalacia; ROP, retinopathy of prematurity.

The strengths of the ProPrems trial are the blinded randomized design, the participant target population of very preterm infants derived from neonatal units with high breast milk feeding rates, and the largest sample size of RCTs to date. The precise and reproducible definition of late-onset sepsis is also a strength and underpins our finding that there is no significant effect of probiotic administration with this combination on definite late-onset sepsis in very preterm infants. Molecular studies are ongoing to detail the intestinal microbiota of a subgroup of enrolled infants, in both groups and in those with and without NEC, as well as to further describe colonization and cross-colonization of infants enrolled in this study. Surviving children are undergoing allergy evaluation, neurodevelopmental assessments after 2 years of age, and an economic evaluation of the probiotics B infantis, S thermophilus, and B lactis.

CONCLUSIONS

This large, multicenter, double-blinded, placebo-controlled, randomized trial demonstrated no evidence that the probiotic combination of B infantis BB-02, S thermophilus Th-4, and B lactis BB-12, administered from soon after birth, reduced culture-proven, definite late-onset sepsis in very preterm infants. The rate of NEC of Bell stage 2 or more was halved, although the baseline rate was very low and so translates to as many as 333 infants requiring probiotic administration with this probiotic combination to prevent 1 case of NEC of Bell stage 2 or more. Although this probiotic combination did not affect all-cause mortality, it appears to be safe, cheap, and readily implemented. These results may assist neonatal units considering using...
probiotics for very preterm infants. Probiotics may be of greatest value globally in neonatal settings with high rates of NEC, mortality, and late-onset sepsis.

ACKNOWLEDGMENTS

Members of The ProPrems Study Group are as follows: ProPrems Steering Group: S.M. Garland (principal investigator), S.E. Jacobs (chief investigator), J.M. Tobin (chief investigator), S.N. Tabrizi (chief investigator), M. Pirotta (chief investigator), S. Donath (associate investigator), C. J. Morley (associate investigator), M. L. K. Tang (associate investigator), C. J. Morley (associate investigator); Clinical Epidemiology and Biostatistics Unit, Murdoch Childrens Research Institute, Melbourne, Australia; Participating Hospitals and Investigators: S.M. Garland, S.E. Jacobs, C.J. Morley, M.L.K. Tang, Tabrizi, Hickey, The Royal Women's Hospital, G.F. Opie, Mercy Hospital for Women; K. Tan, A. Lewis, A. Veldman, Monash Medical Centre; M.L.K. Tang, Royal Children's Hospital, all in Melbourne, Australia; J. Travadi, I.M. R. Wright, John Hunter Children's Hospital; D.A. Osborn, Royal Prince Alfred Hospital; J. Sinn, Royal North Shore Hospital; J. Levison, J.A. Stack, Liverpool Hospital, all in New South Wales, Australia; A.G. DePaoli, Royal Hobart Hospital, Tasmania, Australia; N.C. Austin, B.A. Darlow, Christchurch Women's Hospital, University of Otago, Christchurch, New Zealand; J.M. Alsweiler, M.J. Buksh, Auckland City Hospital and The Liggins Institute, University of Auckland, Auckland, New Zealand.

Members of the ProPrems Study Group (chief investigator), S. Donath (associate investigator), G.F. Opie (associate investigator), C.J. Morley (associate investigator), M.L.K. Tang (associate investigator), C.J. Morley (associate investigator); Trial Statistician: S. Donath, Clinical Epidemiology and Biostatistics Unit, Murdoch Childrens Research Institute, Melbourne, Australia; Participating Hospitals and Investigators: S.M. Garland, S.E. Jacobs, C.J. Morley, M.L.K. Tang, Tabrizi, Hickey, The Royal Women's Hospital, G.F. Opie, Mercy Hospital for Women; K. Tan, A. Lewis, A. Veldman, Monash Medical Centre; M.L.K. Tang, Royal Children's Hospital, all in Melbourne, Australia; J. Travadi, I.M. R. Wright, John Hunter Children's Hospital; D.A. Osborn, Royal Prince Alfred Hospital; J. Sinn, Royal North Shore Hospital; J. Levison, J.A. Stack, Liverpool Hospital, all in New South Wales, Australia; A.G. DePaoli, Royal Hobart Hospital, Tasmania, Australia; N.C. Austin, B.A. Darlow, Christchurch Women's Hospital, University of Otago, Christchurch, New Zealand; J.M. Alsweiler, M.J. Buksh, Auckland City Hospital and The Liggins Institute, University of Auckland, Auckland, New Zealand.

We sincerely thank the infants and their families who participated in this trial and acknowledge the assistance of the research staff at the centers, particularly the ProPrems study coordinators, Link Ung and Chelsea Webster, and the Pharmacy staff at The Royal Women's Hospital (Ms Swee Wong, head of department).

We acknowledge Dr Barry Kiely of The Alimentary Pharmabiotic Institute, Cork, Ireland, for confirming the total Bifidobacterium count in the probiotic powder used in this study. We also thank the Royal Children's Hospital Microbiology Department for culture of and identification of each the probiotic organisms and to genus level for the 2 Bifidobacteria, with identification to species proven by molecular probes developed by one of us (ST). Each batch of probiotic and placebo were also cultured to check viability and purity.

We also acknowledge the Perinatal and Reproductive Epidemiology Research Unit of the Australian and New Zealand Neonatal Network for providing aggregate data about the subpopulation of infants eligible for ProPrems.

REFERENCES

7. Shanahan F. Molecular mechanisms of probiotic action: it's all in the strains! *Gut.* 2011;60(1):1026–1027

38. Hickey L. *The Intestinal Bacterial Community in the Preterm Infant*: The University College of Dublin, 2012 [Doctor of Medicine in the College of Medicine & Medical Science]
Probiotic Effects on Late-onset Sepsis in Very Preterm Infants: A Randomized Controlled Trial
Susan E. Jacobs, Jacinta M. Tobin, Gillian F. Opie, Susan Donath, Sepehr N. Tabrizi, Marie Pirotta, Colin J. Morley and Suzanne M. Garland
Pediatrics; originally published online November 18, 2013;
DOI: 10.1542/peds.2013-1339

Updated Information & Services
including high resolution figures, can be found at:
/content/early/2013/11/12/peds.2013-1339

Citations
This article has been cited by 13 HighWire-hosted articles:
/content/early/2013/11/12/peds.2013-1339#related-urls

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml
Probiotic Effects on Late-onset Sepsis in Very Preterm Infants: A Randomized Controlled Trial
Susan E. Jacobs, Jacinta M. Tobin, Gillian F. Opie, Susan Donath, Sepehr N. Tabrizi, Marie Pirotta, Colin J. Morley and Suzanne M. Garland

Pediatrics; originally published online November 18, 2013;
DOI: 10.1542/peds.2013-1339

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/early/2013/11/12/peds.2013-1339