Why Do Pertussis Vaccines Fail?

During the 2010 pertussis epidemic in California, there was considerable concern in the press and in public health communications about the possible contribution of vaccine failures to the problem. In this commentary, I examine why pertussis vaccines fail and Table 1 lists 8 possible reasons.

The first reason, and perhaps the most important one, is that our estimates of vaccine efficacy have been inflated because of case definition. At the time of the pediatric diphtheria and tetanus toxoids and acellular pertussis (DTP) vaccine efficacy trials in the early 1990s, it was hoped that a universal case definition could be developed so that the results of the various trials could be compared. To this end, the World Health Organization (WHO) case definition was developed. The primary case definition required laboratory confirmation and 21 days of paroxysmal cough. I was a member of the WHO committee and disagreed with the primary case definition because it was clear at that time that this definition would eliminate a substantial number of cases and therefore inflate reported efficacy values. Nevertheless, the Center for Biologics Evaluation and Research of the Food and Drug Administration accepted this definition, and package inserts of the US-licensed DTP vaccines reflect this. For example, Infanrix (containing 20 μg pertussis toxin [PT], 25 μg filamentous hemagglutinin [FHA], and 8 μg pertactin [PRN]) and Daptacel (containing 10 μg PT, 5 μg FHA, 5 μg Fimbriae [FIM]-2/3, and 3 μg PRN) have stated efficacies of 84% and 85%, respectively. When less severe cough illness is included, however, the efficacies of these 2 vaccines decrease to 71% and 78%, respectively. In addition, even these latter efficacies are likely inflated owing to investigator or parental compliance with the study protocol (observer bias). For example, in the trial in Germany, Acell-immune (containing 34.4 μg FHA, 3.2 μg PT, 1.6 μg PRN, and 0.8 μg FIM-2) had a WHO efficacy (21 days of paroxysmal cough) of 83%, and an efficacy of 72% when cough illness of 7 days was included. In this trial, the investigators were to call the parents of study participants every 2 weeks and then evaluate every child with a cough of >7 days. During the study, it became apparent that only about one-third of the investigators were following the protocol. In the subset of study patients followed by the compliant investigators (who worked up mild illnesses as well as “typical pertussis”), the DTP vaccine efficacy was only 40%.

It is very likely that observer bias also occurred in the 2 double-blinded trials in Sweden and Italy, because the study nurses called the families only every month (Italy) or every 6 to 8 weeks (Sweden). Therefore, in both studies the parents were the primary observers. Because typical pertussis was more likely in diphtheria and tetanus toxoids recipients than in DTP recipients, and because the parents “knew pertussis” (it was epidemic in both countries), they would be more likely to have their children evaluated if the illness was typical. This would inflate efficacy.

AUTHOR: James D. Cherry, MD, MSc

AFFILIATION: Pediatric Infectious Diseases, Mattel Children’s Hospital University of California Los Angeles, and the Department of Pediatrics, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California

KEY WORDS

pertussis, DTP, DTPa, adolescent- and adult-formulated tetanus and diphtheria toxoids and acellular pertussis vaccine

ABBREVIATIONS

DTP—pediatric diphtheria and tetanus toxoids and whole-cell pertussis vaccine

DTPa—pediatric diphtheria and tetanus toxoids and acellular pertussis vaccine

FHA—filamentous hemagglutinin

FIM—fimbriae

PCR—polymerase chain reaction

PRN—pertactin

PT—pertussis toxin

WHO—World Health Organization

From a presentation at the 9th International Bordetella Symposium, September 30–October 3, 2010, Baltimore, MD.

Opinions expressed in these commentaries are those of the author and not necessarily those of the American Academy of Pediatrics or its Committees.

www.pediatrics.org/cgi/doi/10.1542/peds.2011-2594
doi:10.1542/peds.2011-2594
Accepted for publication Dec 20, 2011

Address correspondence to James D. Cherry, MD, MSc, Department of Pediatrics, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, MDCC 22-442, Los Angeles, CA 90095-1752. E-mail: jcherry@mednet.ucla.edu

FINANCIAL DISCLOSURE: Dr Cherry has given talks in programs supported directly and through program grants by SanofiPasteur and GlaxoSmithKline. Dr Cherry has consulted about pertussis vaccines with SanofiPasteur and GlaxoSmithKline.

FUNDING: No external funding.
REFERENCES

2. Faryon J, Crowe K. Immunized people getting whooping cough: experts spar over definition and probably observer bias. In addition, other factors, as noted in Table 1, may contribute to the problem.

To overcome the problem, it needs to be recognized that B pertussis is circulating in all age groups and, therefore, for herd immunity there is a need to universally vaccinate all age groups at frequent intervals. New vaccines should be considered for development that include changes to enhance efficacy but retaining a low reactogenicity profile. This could be DTaP vaccines with multiple additional components and perhaps containing less PT. An alternative would be to develop DTP vaccines with detoxified lipopolysaccharide (the cause of reactions to whole-cell vaccines). It has also been suggested to develop “live vaccines.” There are data available (not presented here), however, that indicate that immunity from DTP vaccines is better than that after infection; therefore, I do not think “live vaccines” are a worthwhile approach.

Clearly, additional investments and innovations in pertussis vaccine development are needed to remove pertussis from its position as the leading vaccine-preventable disease in the United States.

TABLE 1 Possible Reasons Why DTP, DTaP, and Adolescent- and Adult-Formulated Tetanus and Diphtheria Toxoids and Acellular Pertussis Vaccines Fail

1. Overexpectation of efficacy because of case definition.
2. Inflated estimates of efficacy because of observer bias.
3. Other Bordetella sp are the cause of similar cough illnesses.
4. Lack of initial potency.
5. Decay in antibody over time.
6. Incomplete antigen package.
7. Incorrect balance of antigens in the vaccine.
8. Genetic changes in B pertussis.

Until the widespread use of polymerase chain reaction (PCR) for the diagnosis of pertussis, the role of Bordetella parapertussis in pertussis in the United States was thought to be minimal. Today, however, the use of dual primers designed to amplify bp segments of IS481 and of IS1001 in real-time PCR systems has proven to be a sensitive method of identifying B parapertussis infections (IS1001 positives). Of nasopharyngeal specimens from patients with cough illnesses sent to a commercial laboratory for PCR testing, during the 3-year period 2008–2010, it was found that 14% of the positive specimens were IS1001 positive, indicating B parapertussis infection. In 2010, the positivity rate was 16.5%. These cases would appear as vaccine failures when they are not, as protection against B parapertussis is not expected from current pertussis vaccines.

Lack of initial vaccine potency was a problem with at least 1 lot of a US pediatric diphtheria and tetanus toxoids and whole-cell pertussis (DTP) vaccine, but this is not a problem with presently in use DTaP or adolescent- and adult-formulated tetanus and diphtheria toxoids and acellular pertussis vaccines. Individual vaccinees do not initially respond to all vaccine antigens after immunization, however. Decay in antibody to specific vaccine proteins over time is, of course, well known; however, its extent has been overlooked. For example, in a recent study between the third and fourth doses, antibody to PT, FHA, PRN, and FIM 2/3 fell eightfold, sixfold, sixfold, and sevenfold respectively. In the same study, the fall of antibody to the same proteins (PT, FHA, PRN, and FIM 2/3) between the fourth and fifth doses was 17-fold, 14-fold, 10-fold, and 18-fold respectively. The fall off of antibodies after the fifth dose has not been examined; however, 2010 California data show that between age 5 and 10 the percentage of vaccine failures per total cases increases linearly each year.

Vaccines that contain 3 or more antigens have better efficacy than 1- or 2-component vaccines. At the present time, the primary vaccines in use in the United States are 3- and 5-component vaccines, so that incomplete antigen package is not presently a major problem. A head-to-head comparison of a 3-versus a 5-component vaccine indicated that the 5-component vaccine had greater efficacy, however.

The last 2 items in Table 1 are less clear cut. Presently, there are data available that suggest that high values of antibody to PT in the presence of high antibody values to PRN or to FIM may have a blocking effect, resulting in decreased efficacy. Vaccine use has resulted in genetic changes in PT, PRN, and FIM in circulating B pertussis strains, and it has been suggested that this has led to increased vaccine failure rates.22 At the present time, however, there is no evidence to support the hypothesis that evolution is allowing circulating B pertussis strains to escape from vaccine-produced antibodies.23 If it were to occur, I would expect it to occur first in Denmark, where a PT toxoid vaccine has been in use for ~15 years; this, as yet apparently has not happened.

In summary, DTP vaccines generally have greater efficacy than DTaP vaccines. All vaccine efficacy has been inflated because of case definition and probably observer bias. In addition, other factors, as noted in Table 1, may contribute to the problem.

PEDIATRICS Volume 129, Number 5, May 2012

Downloaded from by guest on April 20, 2017

COMMENTARY

9. Stehr K, Cherry JD, Heiningger U, et al. A comparative efficacy trial in Germany in infants who received either the Lederle/Takeda acellular pertussis component DTP (DTaP) vaccine, the Lederle whole-cell component DTP vaccine, or DT vaccine. Pediatrics. 1998;101(1 pt 1):1–11

Why Do Pertussis Vaccines Fail?
James D. Cherry

Pediatrics; originally published online April 23, 2012;
DOI: 10.1542/peds.2011-2594

Updated Information & Services
including high resolution figures, can be found at:
/content/early/2012/04/17/peds.2011-2594.citation

Citations
This article has been cited by 27 HighWire-hosted articles:
/content/early/2012/04/17/peds.2011-2594.citation#related-urls

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2012 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.
Why Do Pertussis Vaccines Fail?

James D. Cherry

Pediatrics; originally published online April 23, 2012;
DOI: 10.1542/peds.2011-2594

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/early/2012/04/17/peds.2011-2594.citation