Effects of Cigarette-Smoking on the Fetus and Child

“For the Health of Our Children, Please Don’t Smoke” was the message on a sign sent recently by the American Academy of Pediatrics to its members to be posted in their waiting-rooms (Fig. 1). Cigarette-smoking by the mother during pregnancy can affect the fetus, and smoking by either parent in the presence of the child may affect his health.

BIRTHWEIGHT AND FETAL BREATHING MOVEMENTS

Many studies have now shown that if the mother smokes during pregnancy the birthweight of the infant is reduced, on the average, by about 200 gm. Yerushalmy protested that the effect was due not to smoking but to constitutional differences in smokers as compared with non-smokers. Since Yerushalmy’s death, his argument has been continued by Burch and Hickey et al. in a debate with Goldstein. Astrup et al. in Denmark had attempted to resolve the matter in a study which showed that carboxyhemoglobin levels from carbon monoxide exposure of rabbits and from cigarette-smoking in pregnant women were both correlated with reduction in the birthweight of the offspring. This seeming support form animal experimentation and from human laboratory observations did not satisfy Hickey et al. who claimed that some smokers may, in using tobacco, compensate for a deficiency in “biogenic amine physiology”–and the carboxyhemoglobin may, for genetic reasons, be more slowly cleared from the blood by smokers than by non-smokers. Hence innate differences in the mothers might account for the correlation between blood levels and birthweight. This rationale seems strained, especially when one considers that the effect, observed in many different races, cultures and geographic areas, is dose-related, independent of factors known or suspected to influence birthweight, corrected within six months by accelerated growth rate (as if a toxic influence had been removed), and not found if the mother gives up smoking before the start of her pregnancy. The documentation for these findings has been summarized in an excellent review which appeared in the Surgeon General’s report in 1973 on the health consequences of smoking.

Recently it has been reported that when women in the 32nd to 38th week of uncomplicated pregnancies smoked two cigarettes in succession fetal breathing movements were diminished. The regularity of these movements, measured by echogram, are beginning to be regarded as an index of fetal well-being. Although the mechanism for this alteration is unknown and the report is preliminary in nature, there appears to be little question here about the cause-and-effect relation of cigarette-smoking.

FETAL WASTAGE

Early studies were about equally divided among those which did and those which did not show increased fetal wastage when the mother smoked during pregnancy. In the last few years, however, the trend has been toward those which show an effect. It is currently thought that suboptimal obstetric-pediatric care reduces the margin of safety, and the effect of cigarette-smoking on fetal wastage can then be detected when the sample size is large.

CONGENITAL MALFORMATIONS

In the aggregate, studies of the teratogenic effects of cigarette-smoking in man have been inconclusive. The subtle manifestations recently described for the fetal alcohol syndrome and the fetal hydantoin syndrome suggest that careful study of neonates whose mothers smoked
heavily during pregnancy may reveal previously undetected abnormalities.

HEALTH DURING THE FIRST YEAR OF LIFE

In a study conducted in Jerusalem, it was found that infants of mothers who smoked had significantly more admissions to the hospital for bronchitis or pneumonia during the first year of life than did children whose mothers did not smoke.24 There was also a significantly greater frequency of admissions to the hospital for injuries among children of smokers. The results concerning respiratory infections were confirmed by a study in London, England, in which it was found that the incidence of pneumonia and bronchitis during the first year of life was associated with the smoking habits of either parent, being lowest when both parents were non-smokers, highest when both smoked, and intermediate when only one parent smoked.25 The effect did not persist beyond 1 year of age and was not attributable to overreporting or concurrent respiratory illness in both parent and child.

LATER GROWTH AND DEVELOPMENT

In a study of long-term effects of maternal smoking on physical growth and intellectual development through the first seven years of life, no effect could be demonstrated.26

CONCENTRATION OF TOBACCO SMOKE IN PUBLIC PLACES

The burning of cigarettes between puffs produces 80% to 90% of indoor pollution from tobacco smoke.27 The components of this smoke are quantitatively different from that exhaled by a smoker, in whose respiratory passages 85% of volatile and particulate matter are removed, along with more than 50% of the carbon monoxide.27 In addition, the components behave differently in the atmosphere. Nicotine settles out, whereas carbon monoxide is removed by ventilation. It has been argued that, for these reasons, smoke that is passively inhaled by the non-smoker cannot be measured in terms of equivalent cigarettes smoked.27 There is disagreement on this point.

In a study of the concentration of nicotine and tobacco smoke in public places, it was found that inhalation by non-smokers was equivalent to smoking 0.001 to 0.009 filtered cigarettes per hour.28 These smoke concentrations were lower than those previously reported, in part at least because of differences in accounting for losses due to evaporation and diffusion. The authors were surprised that such low levels would produce the strong public reaction to tobacco smoke that has developed recently. The annoyance may come, they thought, from gaseous components that include strong irritants and unpleasant odors, as from phenols, aldehydes, and organic acids. Thus, respiratory irritation that occurs when patients with pulmonary ailments (as well as some normal persons) are exposed to cigarette-smoking by others, may be attributable to the physiological action of these gaseous components, whereas the psychological irritation may be attributable to their odor.

Other investigators have reported that, even when ventilation is adequate, the measured level of carbon monoxide exceeded the maximum acceptable ambient level of 9 ppm.27

LATER IN LIFE

Cigarette-smoking is more frequent and begins earlier among children of smokers than among
Committee on Environmental Hazards

Robert W. Miller, M.D., Chairman
William B. Brendel, M.D.
Audrey K. Brown, M.D.
J. Julian Chisolm, Jr., M.D.
Allan J. Ebbin, M.D.
Christopher Frantz, M.D.
Dolores Mendez-Cashion, M.D.
John J. Mulvihill, M.D.
Thomas C. Peebles, M.D.
Sylvester J. Sanfilippo, M.D.
Liaison Members
Hans Falk, Ph.D., NIEHS
J. William Flynn, M.D., CDC
John H. Kelson, M.D., EPA

REFERENCES

Effects of Cigarette-Smoking on the Fetus and Child

Pediatrics 1976;57:411

Updated Information & Services
including high resolution figures, can be found at:
/content/57/3/411

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 1976 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.
Effects of Cigarette-Smoking on the Fetus and Child
Robert W. Miller, William B. Brendel, Audrey K. Brown, J. Julian Chisolm, Allan J. Ebbin,
Christopher Frantz, Dolores Mendez-Cashion, John J. Mulvihill, Thomas C. Peebles,
Sylvester J. Sanfilippo, Hans Falk, J. William Flynt and John H. Knelson
Pediatrics 1976;57;411

The online version of this article, along with updated information and services, is located on
the World Wide Web at:
/content/57/3/411