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FIGURE 1
A and B, Decision analysis tree using 3 strategies for a hypothetical population of patients <19 years old with suspected shunt malfunction: CT, fsMRI, and 
POCUS, each depicted as square decision nodes. After the initial choice, an outcome is observed of chance events (circles). Each branch ends at a possible 
terminal node (triangles). Utilities are listed at each terminal node. fMRI, fast sequence magnetic resonance imaging.
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Clinical Data and Cost Inputs

Clinical Inputs

Model inputs used standard 
definitions and data from recently 
published studies (‍Table 1). The 
patient in the base case was a 
previously healthy 2-year-old 
with normal life expectancy (78 
years) based on the average age 
of neuroradiology surveillance 
commencement with shunted 
hydrocephalus.‍9 Furthermore, the 
risk of radiation-induced  
carcinogenesis is highest and most 
relevant for young patients.‍27  
Pretest probabilities were 
estimated for a symptomatic, at-risk 
population.‍2,​6,​‍7,​‍28,​‍29 Probability of 
shunt failure was found to be 30% 
based on a quality improvement 
study evaluating a pathway used by 
providers at a tertiary care pediatric 
ED with 85 000 patient visits per 
year, which is similar to our own 
institution.‍2,​30 To define the test 
characteristics of imaging modalities, 
we used a weighted average from 
published data that evaluated the test 
characteristics of the SS, CT, POCUS, 
and fsMRI. Age specific mortality for 
the general population was taken 
from the US life expectancy tables.‍31

Costs

Short-term hospital costs of care 
were derived from the Pediatric 
Health Information System (PHIS), a 
deidentified administrative database 
maintained by the Children’s 
Hospital Association (Overland 
Park, Kansas), a consortium of 
48 US not-for-profit tertiary care 
children’s hospitals. The PHIS 
includes administrative and billing 
data on inpatient, ED, ambulatory 
surgery, and observation discharges 
for the purpose of external 
benchmarking. Data quality and 
reliability are assured through the 
Children’s Hospital Association 
and participating hospitals and are 
subjected to a number of reliability 
and validity checks before being 
included in the database. Billed 

hospital charges were converted 
to costs by the use of hospital, 
year, and service-specific ratios of 
cost-to-charge obtained through 
the Medicare cost report system 
database and are adjusted for 
regional cost of living with the 
Centers for Medicare and Medicaid 
Services wage index and adjusted for 
inflation with the Consumer Price 
Index for medical care (all costs are 
reported in 2015 US dollars). The 39 
hospitals that provided data to PHIS 
throughout the entire study period in 
2015 were included in this study.

Professional fees were included in 
each imaging pathway and calculated 
by using national 2015 Medicare 
physician fee schedule payments 
associated with appropriate Current 
Procedural Terminology (CPT) codes. 
We did not include professional 
fees for a limited ocular ultrasound 
because recent data from the 
Medicare population suggest there 
are no emergency physicians in 
the United States that are billing 
separately for this service.‍41

Anesthesia fees were based on a 
mean of 60 minutes for the shunt 
repair procedure.‍41 Hospital facility 
fees for outpatient limited ocular 

ultrasonography and a level 5 ED 
visit were obtained from the 2015 
Medicare outpatient prospective 
payment system national payment 
rates.‍42 The facility cost of POCUS 
listed in ‍Table 2 was $93.68.

The total cost of management of 
future radiation-induced malignancy 
from a single current generation 
cranial CT was derived from the 
literature.‍40 All micro costs and 
ranges used for sensitivity analysis 
are shown in ‍Table 2.

Utilities

Utilities are a numeric measure 
representative of the quality of life of 
an individual with a particular state 
of health (ie, represents a patient 
with a malignancy or cranial shunt 
failure) (‍Table 3). They represent 
the strength of an individual’s 
preference for different health states. 
In our model, we assigned values (or 
utilities) to health outcomes using a 
standard Health Utilities Index scale 
ranging from 0 (death) to 1 (baseline 
health, assumed as perfect health for 
this hypothetical population). The 
Health Utilities Index is a 15-item 
questionnaire designed to ask the 
minimum number of questions 
required to classify a subject’s 
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TABLE 1 �Input Probabilities

Parameter Base Case 
Analysis

Range for 
Sensitivity Analysis

Pretest probability of shunt failure‍2 30% 10%–50%
Sensitivity of CT‍32‍‍‍–‍37 66% 53%–88%
Specificity of CT‍32‍‍‍–‍37 87% 76%–96%
Sensitivity of fsMRI‍32,​‍36,​‍38 58% 51%–78%
Specificity of fsMRI‍32,​‍36,​‍38 93% 89%–98%
Sensitivity of ONSD‍16‍‍–‍19 75% 61%–83%
Specificity of ONSD‍16‍‍–‍19 32% 22%–38%
Sensitivity of SS‍33‍–‍35,​‍37 19% 4%–30%
Specificity of SS‍33‍–‍35,​‍37 95% 91%–98%
Probability of death and/or missed diagnosisa 0.1% (1:1000) 0.01%–0.2%
Probability of radiation-induced malignancy‍9,​‍11,​‍21,​‍31,​39 0.22% 0.07%–0.6%
Patient metrics
  No. of cranial CTs for per patient-year‍2,​‍9 1 1–10
  Age‍9 2 0–18
  Life expectancy‍24 78 60–82
  Average annual mortality rate from cancer‍21 5% 1%–10%
  Length of headache/delayed diagnosis, wka 1 1–4
  Postoperative recovery time, wka 4 2–8
  Discount rate‍40 3% 1%–5%

a Author estimate.
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health status. Parents complete 
the Health Utilities Index; from 
responses to this questionnaire, one 
can derive a multi-attribute utility 
function. Scores range from death 
to full health (0–1.00). The Health 
Utilities Index has been shown to 
have reasonable interrater reliability 
and has previously been applied to 
a number of other pediatric disease 
states.‍43,​‍44 In a study comparing 
published cost utility analyses for 
pediatric health states obtained by 
recommended utility assessment 

methods (ie, time trade-off, standard 
gamble) in 4016 parent interviews, 
the Health Utilities Index for mild-to-
severe intellectual disability ranged 
from 0.59 to 0.83 and moderate- 
to-severe cerebral palsy from  
0.60 to 0.76.‍43

Our utilities are also consistent with 
data from other chronic disease 
states, like asthma, seizure disorder, 
and static encephalopathy.‍53 The 
mean score of the Health Utilities 
Index for survivors of a cardiac 

salvage extracorporeal membrane 
oxygenation (ECMO) program was 
0.75 + 0.19 (range, 0.41–1.0).‍54

With delayed diagnosis of shunt 
failure, we assigned a utility of 0.7 
extrapolated from literature on 
patients with migraine headaches.‍55 
Because of a lack of data regarding 
utility estimates for operative 
assessment of shunt failure, we 
considered operative evaluation  
for shunt failure clinically 
equivalent to undergoing a prompt 
neurosurgical intervention for a 
clinically important traumatic  
brain injury, assigning a baseline 
utility of 0.95.‍27,​‍56

To address the variation in 
assessment of health care utilities, 
we included a broad range of 0.5 to 1 
within our sensitivity analysis.

5

TABLE 2 �Key Micro Costs: 2015 CMS and Hospital Cost Data

Hospital Costs (2015 PHIS) Median Length of Stay Median Cost, US $ Range, US $

0222 (APR DRG for ventricular shunt 
surgery)

0–2 d 10 231.82 6115–58 404

CT brain — 2024 516–5257
MRI — 3239 1008–8641

Facility charge (2015 Medicare 
payment)

  Level 5 ED visit (APC 0616) — 493 394–592
  Ocular ultrasound (limited); CPT 

76512
— 93.68 74.94–112.42

Description of service CPT code Total RVUs Professional feea (range ± 20%), US $
  Level 5 ED visit (high complexity) 99 285 4.93 176
  Observation/hospitalization (same 

date)
99 236 6.12 219

  Initial hospital care 99 223 5.7 204
  Subsequent hospital care 99 233 2.91 104
  Discharge from hospital care 99 239 3 107
  Replace and/or revise brain shunt 62 230 24.09 861
  Replace and/or irrigate catheter 62 225 14.93 534
  CSF shunt reprogram 62 252 2.41 86
  CT brain without contrast 70 450 3.49 125
  MRI brain without contrast 70 557 4.97 178
  Anesthesia surgery on brain (base) 6 U — 136
  Anesthesia (15–60 min) 4 U — 90
  Total anesthesia billing 10 U — 226

Total cost of management of future 
radiation-induced cancer‍21,​‍27

— — 49 242b

APC, ambulatory payment classification; APR DRG, All Patients Refined Diagnosis Related Groups; CMS, Centers for Medicare & Medicaid Services; RVU, relative value units; U, units; —, 
not applicable.
a On the basis of the 2015 Medicare conversion factor of 35.7547 and anesthesia conversion factor of 22.6093.
b Includes hospital costs.

TABLE 3 �Utility Estimates

Utilities Base Case 
Analysis

Range for 
Sensitivity 
Analysis

Baseline state of health‍45‍‍‍–49 1 0.9–1
Cranial shunt repair‍50,​‍51 (disutility for 30 d postoperative 

recovery)
0.95 0.5–1

Delayed diagnosis (continued symptoms)‍30,​‍52 0.7 0.5–1
Radiation-induced brain cancer‍21 0.79 0.5–1
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Model Structure

In our decision analysis, we included 
a plain radiographic study (SS) for 
all patients with suspected shunt 
failure. The SS is a low-risk, highly 
specific test that is used to assess 
disconnection or breakage of shunt 
tubing. For a symptomatic patient 
presenting to the ED, if the SS was 
abnormal, we assumed the patient 
would require definitive cranial 
imaging (CT or MRI) and admission 
for revision of shunt tubing. This is 
the practice at our institution and 
consistent with current pediatric 
neurosurgical practice at most 
tertiary pediatric facilities (personal 
communication).

Our model defined shunt failure 
as intraoperative findings 
of malfunction. Nonsurgical 
interventions, such as shunt valve-
adjustment, were excluded. We did 
not differentiate between shunt 
malfunction resulting in neurologic 
deficits and those with clinically 
insignificant findings. We also 
assumed all patients with CT or 
fsMRI findings suggestive of shunt 
failure had operative evaluation.

The primary node of the decision 
tree represents the choice of CT, 
fsMRI, or screening initially with 
POCUS. Within the POCUS arm of 
the model, there is a downstream 
decision node regarding the use of CT 
or fsMRI. The model simulated the 
course of events, starting from the 
initial diagnostic imaging test at age 
2 years and ending when the patient 
died or reached their expected life 
expectancy. During the simulation, 
there were 4 possible health states 
in which the child could exist: shunt 
failure, radiation-induced head and/
or neck cancer, healthy, or dead. 
Additional branch points within the 
model represent the probability of 
certain events occurring (chance 
nodes) and the transition between 
these several states with continuing 
risk over time (Markov nodes). 
Terminal nodes within the model 
represent outcomes and were 

assigned values or “payoff” based on 
quality-adjusted life-years (QALYs) 
and costs. A discount rate of 3% 
was applied to calculate discounted 
QALYs and costs in accordance with 
standard recommendations and 
previous studies.‍38,​‍57,​‍58

The missed diagnosis or accuracy 
of the 3 radiologic tests is captured 
in the model as the proportion of 
false-negatives (1-sensitivity) and 
false-positives (1-specificity) of the 4 
imaging strategies. In the base case, if 
the imaging test is falsely interpreted 
as being normal or unchanged from 
previous visits, we assumed that 
the child would have persistent 
symptoms for a week, return, and 
have their shunt repaired. We also 
incorporated a small yet finite risk 
of mortality (1:1000) when a patient 
is discharged from the ED with a 
missed diagnosis. The literature 
on return visits for recurrent 
symptoms in pediatric patients with 
a cranial shunt is scant. Moreover, 
there is wide variation in clinical 
presentation of children that return 
after an initial visit during which 
shunt failure was missed. Because 
these patients usually warrant 
hospitalization, any additional 
imaging tests (if performed or 
indicated) would be included in the 
global cost of inpatient services for a 
patient with shunt failure.

Statistical Analysis

Outcomes

The 4 imaging strategies were 
compared in terms of QALYs, total 
lifetime costs, ICERs, and NMB. 
We used willingness to pay (WTP) 
thresholds of both $50 000 and 
$100 000 per QALY, as suggested by 
Drummond et al,​‍59 and assessed cost-
effectiveness from the perspective 
of a health care organization.‍38 The 
statistical uncertainty of our results 
was estimated by calculating 95% 
bootstrap confidence intervals.

Sensitivity Analysis

Sensitivity analyses were performed 
to determine how key assumptions 
regarding clinical inputs and cost 
parameters influenced base case 
results. One-way sensitivity analyses 
were represented with a tornado 
diagram, which demonstrates 
how our base case estimates for 
ICERs would change as a single 
parameter is varied. A probabilistic 
sensitivity analysis was conducted 
by using Monte Carlo simulation to 
simultaneously assess uncertainty 
around all key parameters. We 
performed 50 000 second-order 
simulations with probabilities, 
outcomes, and costs drawn from 
plausible distributions. Probabilities 
followed β distributions, whereas 
other parameter distributions 
were assumed to be triangular 
and bounded by upper and lower 
parameter estimates. Results from 
the Monte Carlo simulations were 
assessed with cost-effectiveness 
acceptability curves and ICER plots.

Results

In the base case analysis, the 2-step 
approach of POCUS followed by fsMRI 
(ie, POCUS-fsMRI) was the most cost-
effective strategy as determined by 
NMB (WTP = $100 000) (‍Table 4). The 
incremental cost per additional QALY 
gained for this strategy compared with 
POCUS-CT was $30 289. The ICER for 
fsMRI versus POCUS followed by CT 
(ie, POCUS-CT) was $66 654. Separate 
from the 4 strategies, we also evaluated 
a POCUS only option. Performing fsMRI 
on all patients would cost $269 770 to 
gain 1 additional QALY compared with 
a POCUS only strategy.

Probability of radiation-induced 
cancer, cancer mortality rate, and 
specificity of the CT scan were 
significant contributors to model 
uncertainty. ‍Table 5 shows the 
threshold values for key variables 
when the model favors an alternate 
imaging strategy. Additional one-way 
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sensitivity analyses comparing 
POCUS-CT, CT, and fsMRI also 
demonstrated dependence on these 
parameters.

An ICER plot of the Monte Carlo 
simulation is demonstrated in ‍Fig 2. In 
the probabilistic sensitivity analysis, 
the median difference in NMB 
(POCUS-fsMRI versus POCUS-CT) at 
WTP threshold of $50 000 per QALY 
was $1141 (interquartile range  
$565–$1979) per QALY per patient  
in favor of performing ultrasound,  
and $2781 (interquartile range 
$1496–$4546) per QALY at a WTP 
threshold of $100 000. At a WTP 
threshold of $50 000 per QALY, 
POCUS-fsMRI was the optimal strategy 
93% of the time and 78% of the time 
at a WTP threshold of $100 000 per 
QALY (‍Fig 3).

Discussion

Our aim for this study was to provide 
guidance to frontline clinicians who 
must decide on an initial testing 
strategy for shunt failure evaluation. 
In the base case and probabilistic 
sensitivity analysis, POCUS-fsMRI 
was the most effective strategy. 

Sensitivity analysis indicates, 
however, that a POCUS-fsMRI 
being the optimal strategy depends 
on parameter estimates of risks 
associated with cancer, pretest 
probability of shunt failure, CT 
test characteristics, and the WTP 
threshold. We are not aware of 
any previous literature describing 
a comparative cost-effectiveness 
analysis of imaging strategies for 
suspected cranial shunt failure in a 
pediatric patient.

Our model suggests that an 
ultrasonographic assessment of 
ONSD, contingent on results of 
plain radiography (SS), is the most 
cost-effective diagnostic strategy. 
A screening emergency physician-
directed ultrasound informs 
decision-making for the patient 
with suspected shunt malfunction. 
Ultrasonography may be particularly 
beneficial if it decreases utilization 
of advanced imaging tests like fsMRI 
or CT in children with ventricular 
shunts who are likely to experience 
multiple rounds of imaging during 
the course of a lifetime.

Notably, our cost-effectiveness 
analysis incorporates a conservative 

measure of the benefit of an 
ultrasound because of low sensitivity 
test characteristics of the studies 
contained within the analysis. It is 
likely that the ICER of performing 
POCUS would be greater based on a 
recent meta-analysis showing much 
higher diagnostic accuracy.‍15,​‍19,​‍60

However, we should note that 
although ultrasound, CT, and MRI are 
important in the workup of a patient 
with possible shunt malfunction, 
imaging alone does not surpass 
the physician’s clinical assessment 
(including fundoscopic examination), 
experience, and judgment. The 
history and examination assess 
pretest probability of shunt 
malfunction and determine the 
urgency of surgery, whereas imaging 
remains the most critical additional 
piece of information in neurosurgical 
decision-making.

We recognize that many institutions 
may not have the training or 
expertise in POCUS. From a screening 
perspective, an initial approach 
incorporating a sensitive instead of 
a specific test makes logical sense, 
but it requires a shift in practice 
patterns. In such instances, fsMRI 
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TABLE 4 �Base Case Estimates of Cost-Effectiveness Analysis

Diagnostic Strategy Cost, US $ Incremental Cost, US $ Effectiveness, QALY Incremental Effectiveness ICER,​a US $ Δ NMB (WTP 100 000),​
a US $

CT 7664.26 7664.26 30.6349 — — —
POCUS-CT 6980.82 −683.45 30.6435 0.0086 −79 108.6 1547.38
MRI 8553.85 889.59 30.6671 0.0322 27 627.0 2330.33
POCUS-fsMRI 7710.03 46.57 30.6676 0.0327 1424.2 3225.71

—, not applicable.
a Values for strategies obtained by comparison with CT.

TABLE 5 �Threshold Analysis for Imaging Strategies for Evaluation of Suspected Shunt Failure

Baseline Comparator Variable Threshold, WTP 50 000 Threshold, WTP 100 000

POCUS-fsMRI POCUS-CT Probability of CA 0.00124 —
POCUS-fsMRI POCUS-CT CT specificity 0.937 —
POCUS-fsMRI POCUS-CT Mortality rate of CA 0.011 —
POCUS-fsMRI MRI Probability of death from shunt failure — 0.0093
POCUS-CT MRI Probability of CA 0.00261 0.00132
POCUS-CT MRI CT specificity 0.811 0.956
POCUS-CT MRI Mortality rate of CA — 0.015
POCUS-CT CT Probability of death from shunt failure — 0.0095
MRI CT Probability of CA 0.00094 —
MRI CT CT specificity 0.940 —

In paired comparisons, baseline strategy is optimal strategy. CA, cancer. —, not applicable.
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would be the preferred initial option. 
If institutional constraints limit the 
availability of 24/7 MRI, a cranial CT 
would then be the preferred initial 
imaging test.

There continues to be a 
misunderstanding about radiation 
and medical imaging among both 
public and health care providers.‍32,​‍61  
Moreover, a recent systematic 
literature review suggests there is 
minimal sharing of information before 
nonacute imaging studies between 
patients and physicians about 
potential long-term radiation risks.‍62

Although the true risk of radiation is 
debated and controversial, several 
recent studies continue to show 
an association between increased 
lifetime risk of cancer and radiation 
exposure.‍33‍‍‍–37 The disputed evidence 
from the original Pearce et al‍10 

study was recently addressed in a 
revised article by the same group 
that showed a subsequent risk of 
leukemia and brain tumors even 
after assessment of an underlying 
contributing comorbidity.‍36 Limited 
cranial CT scan techniques to 
decrease exposure in patients with a 
ventriculoperitoneal shunt have also 
been recently proposed.‍39 Therefore, 
in our model, rather than eliminate 
the risk entirely, we decreased the 
risk of radiation-induced cancer to 7 
per 10 000 as the lower limit in our 
sensitivity analysis.

Selecting an optimal imaging strategy 
is best made by shared decision-
making with the child’s caregivers 
about anticipated radiation doses, long-
term risk of malignancy from ionizing 
radiation, and test costs. In a child with 
low probability of shunt malfunction, 

a careful clinical examination with 
bedside ocular ultrasonography, 
if available, in conjunction with 
neurosurgical consultation may be all 
that is necessary.

There are several limitations to 
this study. First, radiation risk is 
variable according to institution, 
age, sex, body size, scanner type, 
and radiation dose.‍10‍–‍12,​‍45 However, 
sensitivity analyses allowed us to 
vary radiation risks, accounting for 
both the inaccuracies of estimates and 
individualization of these variations. 
Second, the model is limited by the 
decision to include only factors 
that contribute directly to patient 
outcomes, without consideration 
of societal implications. Third, 
the literature used to generate 
probabilities is heterogeneous 
and includes multiple etiologies of 
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FIGURE 2
ICER plot of imaging strategies. The CT-only strategy represents the baseline for comparison. Data were generated from 50 000 second-order simulations 
by using Monte Carlo simulation. Ovals around the data represent the boundary of an area encompassing 95% of data for a particular imaging strategy. 
WTP is plotted at both $50 000 and $100 000 per QALY.
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shunt failure and utilizes variable 
definitions of shunt malfunction. 
However, sensitivity analysis provides 
insight on how varying model inputs, 
such as pretest probability, can affect 
optimal imaging strategy. Fourth, we 
may have unintentionally assigned 
lower utilities to health status 
associated with shunt malfunction. 
However, our utilities are consistent 
with data from other chronic disease 
states, like asthma, seizure disorders, 
and static encephalopathy.43 
For example, a study comparing 
published cost utility analyses 
recommends that the Health Utilities 
Index for mild-to-severe intellectual 
disability range 0.59 to 0.83 and 
that the Health Utilities Index for 
moderate-to-severe cerebral palsy 
range 0.60 to 0.76.‍43 We also assumed 
that these measurements are fixed 
over time; sensitivity analyses would 
attenuate this limitation.

We did not include a shunt tap 
in our model. In our institutional 

experience, it is infrequently 
performed because of the risk of 
introducing infection and because it 
frequently yields equivocal results. 
The procedure is generally reserved 
for children with high pretest 
probability of shunt malfunction 
without an interval change in 
their imaging studies. In addition, 
the majority of these patients 
are observed, independent of the 
results of the shunt tap, and either 
admitted and/or undergo a shunt 
revision. Hence, the cost associated 
with this procedure is included in 
the cumulative inpatient costs of 
pediatric patient management with 
a shunt. A reason not to perform 
a shunt tap, despite persistent 
symptoms, may be a child with slit 
ventricle syndrome. Ultimately, 
clinical judgment of the attending 
neurosurgeon determines role of a 
shunt tap.

The focus of our model is 
the pediatric patient with 

low-to-intermediate probability of 
shunt failure. Therefore, rather than 
include a shunt tap as a separate 
decision node, we elected to vary the 
pretest probability from 10% to 50% 
in our sensitivity analysis.

There is a paucity of literature 
regarding recurrence of symptoms 
in children with cranial shunts. 
Although recurrence of new 
symptoms will occur over time, their 
frequency and specific association 
with shunt failure is variable. 
Over the course of the patient’s 
lifetime, the greater the frequency of 
recurrences, the higher the potential 
was for receiving CT imaging at 
each clinical encounter. However, 
the exact relationship between 
cumulative independent exposures to 
ionizing radiation and lifetime risk of 
radiation-induced carcinogenesis is 
unclear.

With the availability of advanced 
neuroimaging tests, the value of 
the SS is debated. At all of our 
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FIGURE 3
Cost-effectiveness acceptability curve at various WTP thresholds. A cost-effective acceptability curve represents the percentage of iterations within the 
probabilistic sensitivity analysis (y-axis) plotted against the WTP threshold set at increasing values (x-axis). The WTP represents how much money a society 
is willing to pay for an increase in 1 QALY. The above graph demonstrates the cost-effectiveness acceptability curves for all 4 strategies.
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institutions, a SS is routinely 
performed because of its high 
specificity, relatively low cost, and 
extremely low risk of radiation 
exposure. Hence, in our model all 
patients received a SS first.

If a patient with a normal screening 
ONSD was discharged from the 
hospital, at worst we assumed 
morbidity to entail persistent 
symptoms or headache and assigned 
a disutility of 0.3 over a week. 
Because the literature on mortality 
in missed shunt malfunction is 
sparse, we assumed this rate to 
be a conservative estimate of 1 
per 100 000. It may be acceptable 
to discharge a patient with low 
probability (ie, false-negative ONSD) 
of shunt failure because the condition 
will eventually be diagnosed if 
patients have a good understanding 
of the need to return for persistent or 
worsening symptoms.

With respect to normative data in 
pediatrics, it is important to establish 
baseline ONSDs for asymptomatic 
children with cranial shunts 
because they have a higher baseline 
ONSD.‍16,​‍25 Access to these baseline 
measurements, much like a review of 
previous CT or fsMRI for ventricular 
size, would enhance the accuracy of 
an emergency physician-performed 
POCUS.

Rapid sequence MRIs have some 
limitations. Compared with CT, they 
are not as reliable at assessing the 
positions of ventricular catheter, 
small intracranial hemorrhage, 
or pneumocephalus in a shunt 
malfunction setting.‍46,​‍47 However, in 
1 recent study, albeit underpowered, 
the accuracy and specificity of rapid 
cranial MRI was not inferior to CT 
(within an a priori noninferiority 
margin of 10%).‍48

In addition, programmable 
ventricular devices require 

additional time and resources to 
reset the shunt after an MRI scan.‍49,​‍50  
The 2015 Medicare professional fee 
for programming a shunt (‍Table 2)  
was $86. We did not include this 
cost in our model for 2 reasons: 
not all shunts placed in pediatric 
patients are of the programmable 
type and, compared with the 
median cost of an MRI ($3239), the 
cost of reprogramming a shunt is 
relatively small. Therefore, even in 
the scenario of all shunt valves being 
programmable, we believe that this 
small additional cost is incorporated 
within the range of costs of an MRI 
scan in our sensitivity analysis 
($1008–$8641).

In terms of cost, MRIs are generally 
more expensive than CT scans. As 
the American Medical Association’s 
CPT does not specify codes to bill for 
professional and technical services 
for a limited MRI study such as this, 
the charges submitted by the hospital 
tend to be higher than a CT. However, 
on the basis of recent data from 
similar pediatric institutions, the 
marginal cost and charges for a rapid 
cranial MRI may not be significantly 
greater than a CT scan.‍51

Finally, potential delays in care 
related to emergency access to fsMRI, 
as well as need for sedation should 
be examined on an institutional basis. 
With current fast image acquisition 
protocols, times ranging from 1 to 4 
minutes for a T2-weighted rapid MRI 
scan are comparable to 2 minutes 
for a CT scan with reduced motion 
artifact.‍52,​‍63‍‍‍‍‍–‍70

Conclusions

The routine use of CT for cranial 
shunt malfunction may cause 
more long-term harm than benefit 
because of the excess lifetime risk 

of radiation-induced malignancy. If 
the pretest probability is low, our 
model highlights a screening bedside 
ultrasonographic measurement of 
ONSD followed by fsMRI to be the 
most cost-effective. In EDs in which 
bedside ultrasonography expertise 
is unavailable, fsMRI is the next best 
option.
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