Population Outcomes of Three Approaches to Detection of Congenital Hearing Loss

Melissa Wake, MD,a,b,c Teresa Y.C. Ching, PhD,d,e Karen Wirth, DEdPsych,a Zeffi Poulakis, DPych,a,b Fiona K. Mensah, PhD,a,b,c Lisa Gold, PhD,f Alison King, BSc, Dip Aud,g Hannah E. Bryson, BA,a Sheena Reilly, PhD,a,b,c Field Rickards, PhDc

abstract

BACKGROUND: Universal newborn hearing screening was implemented worldwide largely on modeled, not measured, long-term benefits. Comparative quantification of population benefits would justify its high cost.

METHODS: Natural experiment comparing 3 population approaches to detecting bilateral congenital hearing loss (>25 dB, better ear) in Australian states with similar demographics and services: (1) universal newborn hearing screening, New South Wales 2003–2005, n = 69; (2) Risk factor screening (neonatal intensive care screening + universal risk factor referral), Victoria 2003–2005, n = 65; and (3) largely opportunistic detection, Victoria 1991–1993, n = 86. Children in (1) and (2) were followed at age 5 to 6 years and in (3) at 7 to 8 years. Outcomes were compared between states using adjusted linear regression.

RESULTS: Children were diagnosed younger with universal than risk factor screening (adjusted mean difference –8.0 months, 95% confidence interval –12.3 to –3.7). For children without intellectual disability, moving from opportunistic to risk factor to universal screening incrementally improved age of diagnosis (22.5 vs 16.2 vs 8.1 months, \(P < .001\)), receptive (81.8 vs 83.0 vs 88.9, \(P = .05\)) and expressive (74.9 vs 80.7 vs 89.3, \(P < .001\)) language and receptive vocabulary (79.4 vs 83.8 vs 91.5, \(P < .001\)); these nonetheless remained well short of cognition (mean 103.4, SD 15.2). Behavior and health-related quality of life were unaffected.

CONCLUSIONS: With new randomized trials unlikely, this may represent the most definitive population-based evidence supporting universal newborn hearing screening. Although outperforming risk factor screening, school entry language still lagged cognitive abilities by nearly a SD. Prompt intervention and efficacy research are needed for children to reach their potential.
Few population screening programs are implemented or evaluated in light of adequate epidemiologic evidence. This would include known population costs versus benefits from exemplary randomized trials measuring long-term outcomes of screening, backed up by documented epidemiology of the condition’s natural history in whole-population cohorts assembled after, as well as before, the screening programs commenced.

This is as true for congenital hearing loss as for most programs. Hearing loss can have devastating effects on children’s lives and incur large societal costs. Therefore, despite methodologic flaws, studies in the 1990s linking earlier diagnosis and management to better preschool language drove large-scale implementation of new screening strategies (universal risk factor identification and universal newborn hearing screening [UNHS]) aiming to achieve much earlier detection and intervention than the existing opportunistic strategies, such as referral when a parent voiced concern about the child’s hearing or language.

Risk-factor screening involves systematically identifying and referring for audiologic testing all infants with risk factors for hearing loss, coupled with predischarge hearing screening of infants admitted to the NICU. Reports of the NICU-only and risk-factor-only components are available, but no published studies have reported outcomes of population-based risk-factor programs including both elements, presumably because they were never widely implemented.

In contrast, UNHS programs offer every newborn an objective hearing screen. This clearly leads to earlier amplification and intervention. Cost-effectiveness was supported by the only economic evaluation to consider long-term costs and outcomes of UNHS versus risk-factor screening but, in the absence of trials, this was based solely on projected improvements. Two quasi-randomized trials of UNHS have since been published. In the Wessex Study of 7- to 8-year-old English children offered UNHS in 1993–1996, neither expressive language nor speech clearly benefited; mean receptive language improved (effect size 0.56, 95% confidence interval [CI] 0.03–1.08) but remained nearly 2 SD below population norms. In the DECIBEL study, parents did not report better language outcomes in Dutch children born 2003 through 2005 in UNHS versus non-UNHS regions (at mean ages of 48 and 61 months, respectively). However, the Wessex study was not truly population based and was implemented before modernization of English audiologic services, whereas DECIBEL did not directly measure language outcomes.

Our recent systematic review of economic evaluations therefore questioned the evidence that UNHS represents a value-for-money proposition. However, gold standard randomized trials are now virtually impossible. We report an unusual whole-of-population natural experiment in which 1 Australian state offered a fully operational statewide UNHS program, while another offered the only full-fledged population risk factor program we know of.

We aimed to

1. compare population outcomes at age 5–6 years of UNHS versus risk factor screening,
2. explore program benefits by hearing loss severity, and
3. compare UNHS and risk-factor screening outcomes with prospectively collected 7- to 8-year-old population outcomes in a comparable cohort exposed to opportunistic detection a decade earlier.

METHODS

Study Design and Populations

The Statewide Comparison of Outcomes (SCOUT) study was a quasi-randomized trial targeting children born March 2003–February 2005 in 2 Australian states, New South Wales (offering UNHS) and Victoria (offering risk-factor screening). We also compared both groups with a 7- to 8-year-old population-based Victorian cohort, born January 1991 through July 1993 (when detection was largely opportunistic), from this research team’s earlier Children with Hearing Impairment in Victoria Outcome Study (CHIVOS).

New South Wales and Victoria were otherwise similar in 2003–2005 on a range of potentially confounding factors, including socioeconomic advantage, ethnic composition, age of commencing school, and reading, writing, and numeracy performance across grades 3, 5, and 7. Both states offered government-funded diagnostic audiologic services, whereas DECIBEL did not directly measure language outcomes.
and/or cochlear implants by 4 years. We excluded children whose (1) parents had insufficient English to participate, as judged by the treating Australian Hearing audiologist or by the researcher at the initial contact call; (2) hearing loss was unilateral, acquired (as judged by Australian Hearing records) and/or conductive, or currently in the normal range; and/or (3) recruitment was considered inappropriate (eg, living overseas, severe known social/disability barriers). The earlier CHIVOS cohort additionally excluded children with known intellectual disability.

Detection Programs

Universal Newborn Hearing Screening, 2003–2005

Since December 2002, New South Wales has offered automated auditory brainstem response screening to its ~84,500 newborns annually; infants failing 2 successive screens are referred for diagnostic audiology, and infants with hearing risk factors are referred for diagnostic audiology at age 8 to 12 months. Since May 2003, it has consistently achieved >95% population coverage and >95% follow-up for referred infants.17

Risk-Factor Screening, 2003–2005

From February 2003 to February 2005, all newborns admitted to Victoria’s 4 NICUs and associated special care nurseries were systematically offered predischarge automated auditory brainstem response hearing screening (71.1% capture attained over this period19) followed by diagnostic audiology referral. All other newborns were offered a risk factor ascertainment and behavioral hearing screening program (see next paragraph).

Opportunistic Detection, 1991–1993

Detection in Victoria was wholly opportunistic until December 1992. Thereafter, a 2-stage program was implemented whereby maternal and child health nurses administered (1) a hearing risk factor questionnaire at 2 weeks and 8 months (attended by >97% and 83% of Victorian infants respectively), and (2) a standardized, modified Ewing Distraction hearing screen19 at 8 to 10 months. Infants with risk factors and/or who failed 2 successive distraction tests were referred to diagnostic audiology.20 We included as “opportunistic” children born spanning (ie, both before and after) this program’s implementation because previous evaluation showed little impact on detection.7
Using dates of birth, we calculated ages at diagnosis and hearing aid fitting from the dates of first Australian Hearing and first fitting appointments respectively. Potential a priori confounders were nonverbal IQ and hearing loss severity, defined as the most recent 3-frequency pure-tone average dB HL (for most children within the year preceding the assessment) across 0.5, 1, and 2 kHz in the better ear. Demographic measures included child gender, parent tertiary level education, household income category, English as the child’s second language, and the census-based Disadvantage Index for home postcode (a continuous measure; higher scores reflect greater advantage).28

Statistical Analysis

Outcomes of UNHS Versus Risk-Factor Programs (Aim 1)

Mean differences were estimated using linear regression. Potential confounders were included in a stepwise approach: first sociodemographic factors, then nonverbal IQ, and finally current hearing acuity; age was also included for letter knowledge. Analyses were conducted including all children, then for children without intellectual disability, defined as a nonverbal IQ that was either <70 or could not be assessed for the reasons noted earlier. This restricted the sample by 29 (21.6%): 20 (29.0%) in the UNHS group and 9 (16.1%) in the risk factor group.

Outcomes by hearing loss severity (Aim 2)

Using fractional polynomials, we examined graphically whether benefits of UNHS versus risk factor screening may differ by hearing loss severity among children without intellectual disability.

Comparison Among UNHS, Risk Factor, and Opportunistic Detection (Aim 3)

Mean between-program differences were estimated using linear regression, adjusting for confounders as in aim 1 and excluding children with intellectual disability to enable comparability with the opportunistic cohort. Tests for trends in outcomes, moving from opportunistic to risk factor to UNHS, were conducted with these 3 categories as a linear predictor term in the regression models.

Other Considerations

Stata version 12 was used throughout. To account for missing potential confounders, analyses were conducted with and without multiple imputation using the multivariate normal regression model and assuming data were missing at random. Results were similar, so the latter are reported.

RESULTS

Figure 1 summarizes participant recruitment. Between March 2003 and February 2005, 172 523 babies were born in New South Wales and 123 855 in Victoria. The National Acoustic Laboratories considered 313 to be eligible, comprising 179 in New South Wales (0.10% of the total births) and 134 in Victoria (0.11%). The 179 nonparticipants had similar initial (59 vs 63 dB HL, \(P = .30\)) and current (60 vs 65 dB HL, \(P = .24\)) hearing as the 134 participants (69 New South Wales, 65 Victoria; 43% response). Children in the 2 states (Table 2) had, on average, similar initial and current hearing loss and nonverbal IQ. Since New South Wales parents reported slightly lower educational levels...
and less advantaged neighborhoods, these factors became potential confounders. Table 2 also summarizes characteristics of the opportunistic sample, which have been reported in detail elsewhere.12,13

Outcomes of UNHS Versus Risk-Factor Programs (Aim 1)

Having taken account of sociodemographic differences, hearing loss was estimated to be diagnosed on average 8.0 months earlier (95% CI –12.3 to –3.7; Model 1) in the UNHS state (Table 3). There was some evidence of these children having better expressive language, receptive vocabulary, and letter knowledge. Although these effects strengthened with adjustment for nonverbal IQ and 3-frequency average hearing loss, statistically significant differences did not emerge. This appeared to reflect the greater number of low-functioning children in the UNHS state. Their strong clustering of scores around the lowest possible “basal” values lowered their mean scores and prevented discernment of any possible UNHS benefit.

In children without intellectual disability, clear benefits were associated with UNHS for expressive language (fully adjusted mean difference 8.2 points, 95% CI 0.5 to 15.9) and receptive vocabulary (8.1, 95% CI 0.8 to 15.4), with some evidence of better receptive language (5.2, 95% CI –1.9 to 12.3). Letter knowledge, behavior, and parent and child health-related quality of life were similar between states.

Outcomes by Hearing Loss Severity (Aim 2)

Among children without intellectual disability, Fig 2 illustrates that language and vocabulary scores fell with increasing severity of hearing loss, and letter knowledge scores were better in those with mild than more severe losses (Fig 2). Benefits of UNHS appeared maximal in the mild-moderate range for letter knowledge, severe range for receptive vocabulary and profound range for receptive language; benefits to expressive language appeared unrelated to severity. Child behavior difficulties and health-related quality of life were largely independent of both severity and screening program.

Comparison Among UNHS, Risk Factor, and Opportunistic Detection (Aim 3)

Outcomes on moving from opportunistic, to risk factor, to UNHS detection showed significant stepwise gains in children without intellectual disability (Table 4). Having adjusted for sociodemographic factors, nonverbal IQ and level of hearing loss, the mean age of diagnosis was estimated as 14.4 months earlier in the UNHS than the opportunistic cohort (95% CI –19.3 to –9.6) and, despite delays, fitting still occurred 10.5 months earlier (both P for trend <.001).

Adjusted mean receptive language, expressive language, and receptive vocabulary scores were 7.0 points (95% CI 0.2 to 13.8), 14.4 points (95% CI 7.3 to 21.5), and 12.1 points (95% CI 5.9 to 18.4) higher in the UNHS than the opportunistic cohort, respectively.

Nonetheless, language, receptive vocabulary, behavior, and child health-related quality of life scores remained well below population normative mean values after introduction of UNHS (Table 3, all Ps ≤ .001). Parent health-related quality of life was similar to normative mean values regardless of screening program.
DISCUSSION

Principal Findings

This is the first population study to contrast directly assessed, comparable, long-term outcomes of 3 approaches to detecting bilateral congenital hearing loss. There was strong evidence of incremental benefits to age of diagnosis, receptive and expressive language, and receptive vocabulary on moving from opportunistic to risk factor to universal hearing screening in children without intellectual disability (the large majority). Improvements occurred across the severity spectrum, implicating earlier access to useful hearing via both hearing aids and cochlear implantation.

Nonetheless, language and vocabulary remained well below population means and the children’s cognitive potential, and there was

TABLE 2 Sample Characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Child</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at assessment, mo, mean (SD)</td>
<td>65.3 (6.6)</td>
<td>62.8 (4.9)</td>
</tr>
<tr>
<td>Male gender, %</td>
<td>57</td>
<td>55</td>
</tr>
<tr>
<td>Initial severity of hearing impairment, mean (SD)</td>
<td>61.0 (27.1)</td>
<td>64.6 (31.6)</td>
</tr>
<tr>
<td>Current hearing impairment severity, mean (SD)</td>
<td>65.2 (30.2)</td>
<td>63.8 (32.4)</td>
</tr>
<tr>
<td>Nonverbal IQ, mean (SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole sample</td>
<td>89.7 (31.9)</td>
<td>93.0 (28.0)</td>
</tr>
<tr>
<td>Children without intellectual disability</td>
<td>103.4 (15.2)</td>
<td>102.0 (15.5)</td>
</tr>
<tr>
<td>Family</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language other than English household, %</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Disadvantage Index, mean (SD)</td>
<td>1004.4 (71.4)</td>
<td>1019.5 (80.7)</td>
</tr>
<tr>
<td>Income category, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td><$33 800 per year</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>$33 800–$51 999 per year</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>$52 000–$103 999 per year</td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>≥$104 000 per year</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>Parent with tertiary-level education, %</td>
<td>31</td>
<td>44</td>
</tr>
</tbody>
</table>

NSW, New South Wales; VIC, Victoria; --, data not available.

TABLE 3 Outcomes of UNHS Versus Risk-Factor Screening

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Normative</th>
<th>Demographically Adjusted Mean<sup>a</sup></th>
<th>Fully Adjusted Mean<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>UNHS</td>
<td>Risk Factor</td>
</tr>
<tr>
<td>All children<sup>c</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age diagnosed, mo</td>
<td>—</td>
<td>7.9</td>
<td>15.9</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptive language</td>
<td>100 (15/21)</td>
<td>80.9</td>
<td>78.0</td>
</tr>
<tr>
<td>Expressive language</td>
<td>100 (15/21)</td>
<td>81.1</td>
<td>76.0</td>
</tr>
<tr>
<td>Receptive vocabulary</td>
<td>100 (15/22)</td>
<td>79.7</td>
<td>73.9</td>
</tr>
<tr>
<td>Letter knowledge</td>
<td>12.2 (5.1)</td>
<td>9.6</td>
<td>9.6</td>
</tr>
<tr>
<td>Behavior problems</td>
<td>6.9 (5.1)</td>
<td>9.6</td>
<td>9.6</td>
</tr>
<tr>
<td>Health-related quality of life</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PedsQL</td>
<td>81.9 (12.6)</td>
<td>76.7</td>
<td>75.5</td>
</tr>
<tr>
<td>HUI (child)</td>
<td>0.90 (0.13)</td>
<td>0.72</td>
<td>0.66</td>
</tr>
<tr>
<td>HUI (parent)</td>
<td>0.86 (0.31)</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>Without intellectual disability<sup>c</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age diagnosed, months</td>
<td>—</td>
<td>7.0</td>
<td>15.3</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptive language</td>
<td>100 (15/21)</td>
<td>87.5</td>
<td>82.7</td>
</tr>
<tr>
<td>Expressive language</td>
<td>100 (15/21)</td>
<td>87.8</td>
<td>80.0</td>
</tr>
<tr>
<td>Receptive vocabulary</td>
<td>100 (15/22)</td>
<td>90.8</td>
<td>82.9</td>
</tr>
<tr>
<td>Letter knowledge</td>
<td>13.2 (5.1)</td>
<td>10.9</td>
<td>10.9</td>
</tr>
<tr>
<td>Behavior problems</td>
<td>6.9 (5.1)</td>
<td>9.2</td>
<td>9.2</td>
</tr>
<tr>
<td>Health-related quality of life</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PedsQL</td>
<td>81.9 (12.6)</td>
<td>79.0</td>
<td>76.2</td>
</tr>
<tr>
<td>HUI (child)</td>
<td>0.90 (0.13)</td>
<td>0.76</td>
<td>0.72</td>
</tr>
<tr>
<td>HUI (parent)</td>
<td>0.86 (0.31)</td>
<td>0.87</td>
<td>0.87</td>
</tr>
</tbody>
</table>

HUI, Health Utilities Index; PedsQL, Pediatric Quality of Life Inventory; --, (Letter Knowledge): no standardized normative mean; --, (age of diagnosis): N/A.

^a Adjusted for parent education, English as a second language, disadvantage index, gender (and age, for letter knowledge).
^b With additional adjustment for nonverbal IQ and current hearing loss.
^c Sample size varied between 101 and 120 for demographically adjusted model, and 93 to 111 for fully adjusted model. When children with intellectual disability were excluded, the sample size varied from 87 to 88 for the demographically adjusted model and 85 to 93 for the fully adjusted model.
little benefit to behavior or health-related quality of life. Reflecting the relative newness of the UNHS program, ages of diagnosis and hearing aid fitting still fell well short of the goal of “appropriate intervention at no later than 6 months of age” even in the UNHS state.32

Strengths of the Study

Of relevance to public health,33 we demonstrated mean population improvements regardless of actual receipt of screen and saw no evidence of harm to parent quality of life or child psychosocial well-being. Because the 2003–2005 cohorts shared postdiagnostic protocols, amplification, and early intervention opportunities, we are confident in attributing these benefits to the UNHS program itself. We measured outcomes and potential confounders using directly assessed, reliable measures with normative standard scores for outcomes and potential confounders.

Limitations

Although clinically important in size, the study was underpowered to confirm the gains observed with universal versus risk-factor screening, reflecting the 43% uptake from the unavoidable 2-stage opt-in process. Our measures were insufficiently fine-grained for low-functioning children. Imputing basal scores for children with intellectual disabilities allowed us to retain this important group but precluded detecting improvements they may have experienced and skewed whole-cohort comparisons toward null values.

Because characteristics were similar in participants and nonparticipants in both states, differential selection or response bias seem unlikely. However, our results may not generalize to families experiencing stressors or poor English skills that precluded recruitment. Nor was the study powered for subgroup analysis (eg, cochlear implantation). Lack of blinding to program should have been partially offset by the standardized assessments.

Finally, the 1991–1993 cohort excluded children with intellectual disability and, because they were slightly older, their language was measured using the Clinical Evaluation of Language Fundamentals 3. Like the Preschool Language Scale 4, this yields normative means of 100 (SD 15), and our long-term multiwave follow-up to 17 to 19 years indicates high stability of language scores (unpublished data), indicating it should be a good proxy for the 5- to 6-year-old measures.

FIGURE 2

Population outcomes by hearing acuity in children without intellectual disability for UNHS and risk-factor screening. [large]
Interpretation in Light of Other Studies

These findings broadly agree with, but go beyond, other recent reports.9,10 The steady improvement in language-related outcomes with each screening advance makes sense, unlike the DECIBEL study in which benefits to gross motor and social, but not language, skills were difficult to explain.10 Our results also preserve both the expected gradients in language-related outcomes by hearing loss severity and congruence across receptive language, expressive language, and receptive vocabulary. These results are dissimilar to the Wessex study, which reported a major and surprising discordance in children exposed to UNHS of nearly 1.2 SD between their surprisingly low receptive language (−1.89 SD below population norms in the UNHS group) and much better expressive language scores (−0.74 SD below population norms).9

Meaning of the Study

With new randomized trials now unlikely, this study may represent the most definitive population-based evidence that UNHS leads to meaningful improvements in language and related outcomes. However, it is just 1 important incremental step, buying, on average, a third to a half of an SD in language scores by school entry over comprehensive risk factor screening. We draw parallels with other public health issues for which the spectacular gains of the past half century, such as smoking, road deaths, childhood cancer, cystic fibrosis, have occurred in modest, steady steps, never resting on a single innovation.

CONCLUSIONS

This study has important forward implications. First, intervention should follow detection much faster than was possible in New South Wales in 2003–2005. In Australia, children are now routinely fitted with hearing aids in the first 6 months of life,34 but many jurisdictions lag behind. Second, research should focus on the science of intervention, amplification, and hearing restoration. Population-based randomized trials, which are sorely lacking in this field, could optimize postdiagnostic interventions for children with hearing impairment, with directly assessed language and other measures as outcomes. Third, long-term follow-up of the existing cohorts could confirm the societal benefits of UNHS, especially if combined into an adequately powered prospective meta-analysis. Finally, new population-based birth cohorts must be recruited to document secular improvements and guard against complacency; this study’s 3 cohorts could provide a benchmark against which to measure these future gains.

ACKNOWLEDGMENTS

We thank all children, parents, and researchers involved in the SCOUT study. We also acknowledge the assistance of the LOCHI study and the early intervention agencies and cochlear implant clinics in the collection of outcomes data.

TABLE 4 Population Outcomes of UNHS Versus Risk Factor Versus Opportunistic Screening in Children Without Intellectual Disability

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Fully Adjusted Mean for Each Program</th>
<th>Fully Adjusted Mean Difference (95% CI)</th>
<th>P (Trend)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Opportunisticb</td>
<td>Risk Factorb</td>
<td>UNHSb</td>
</tr>
<tr>
<td>Age diagnosed (mo)</td>
<td>22.5</td>
<td>16.2</td>
<td>8.1</td>
</tr>
<tr>
<td>Age hearing aid fitted</td>
<td>24.0</td>
<td>17.9</td>
<td>13.5</td>
</tr>
<tr>
<td>Time between diagnosis and fitting</td>
<td>1.4</td>
<td>1.7</td>
<td>5.4</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptive language</td>
<td>81.8</td>
<td>83.0</td>
<td>88.9</td>
</tr>
<tr>
<td>Expressive language</td>
<td>74.9</td>
<td>80.7</td>
<td>89.3</td>
</tr>
<tr>
<td>Receptive vocabulary</td>
<td>79.4</td>
<td>83.8</td>
<td>91.5</td>
</tr>
</tbody>
</table>

* Adjusted for parent education, English as a second language, disadvantage index, gender, nonverbal IQ, current hearing loss (and age, for letter knowledge).

† Sample n varied between 69 and 71 for opportunistic, 51 and 52 for risk factor, and 41 and 42 for UNHS.

ABBREVIATIONS

CHIVOS: Children with Hearing Impairment in Victoria Outcome Study
CI: confidence interval
dB HL: decibels hearing level
LOCHI: Longitudinal Outcomes of Children with Hearing Impairment
SCOUT: Statewide Comparison of Outcomes
UNHS: Universal Newborn Hearing Screening

by guest on October 23, 2017 http://pediatrics.aappublications.org/ Downloaded from
and reviewed and revised the manuscript; Ms King assisted with the design of the study, facilitated the recruitment of participants, and reviewed and revised the manuscript; Ms Bryson contributed to the data analysis and drafted and revised the manuscript; Dr Reilly conceptualized and designed the study, provided guidance regarding the data collection instruments, and reviewed and revised the manuscript; and all authors approved the final manuscript as submitted.

DOI: 10.1542/peds.2015-1722

Accepted for publication Oct 20, 2015

Address correspondence to Professor Melissa Wake, Centre for Community Child Health, Royal Children’s Hospital, Flemington Rd, Parkville, VIC 3052, Australia.

E-mail: melissa.wake@rch.org.au

REFERENCES

1. Helfand M, Thompson DC, Davis R. Newborn Hearing Screening (Systematic Evidence Review Number 5; Contract 290-97-0018 to the Oregon Health & Science University Evidence-based Practice Center; Portland, Oregon). AHRQ Publication No. 02-S001. Rockville, MD: Agency for Healthcare Research and Quality; 2001

17. Murphy E, Leigh-Erin R. Bridging the Gap Between Universal Newborn Hearing and Screening (UNHS) and Audiological Assessment: Achieving Above 95% Follow-up to Audiological Assessment—The NSW Health SWISH Program. Presented at the 2006 International Conference on Newborn Hearing Screening: Beyond New Born Hearing Screening: Infant and Childhood Hearing in Science and Clinical Practice; May 31–June 3, 2016; Cernobbio, Italy; 2006

Population Outcomes of Three Approaches to Detection of Congenital Hearing Loss
Melissa Wake, Teresa Y.C. Ching, Karen Wirth, Zeffie Poulakis, Fiona K. Mensah, Lisa Gold, Alison King, Hannah E. Bryson, Sheena Reilly and Field Rickards

Pediatrics 2016;137;
DOI: 10.1542/peds.2015-1722 originally published online December 24, 2015;

Updated Information & Services
including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/137/1/e20151722

References
This article cites 21 articles, 6 of which you can access for free at:
http://pediatrics.aappublications.org/content/137/1/e20151722.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Developmental/Behavioral Pediatrics
http://classic.pediatrics.aappublications.org/cgi/collection/developmental_issues_sub
Cognition/Language/Learning Disorders
http://classic.pediatrics.aappublications.org/cgi/collection/cognition:language:learning_disorders_sub
Public Health
http://classic.pediatrics.aappublications.org/cgi/collection/public_health_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
https://shop.aap.org/licensing-permissions/

Reprints
Information about ordering reprints can be found online:
http://classic.pediatrics.aappublications.org/content/reprints
Population Outcomes of Three Approaches to Detection of Congenital Hearing Loss
Melissa Wake, Teresa Y.C. Ching, Karen Wirth, Zeffie Poulakis, Fiona K. Mensah, Lisa Gold, Alison King, Hannah E. Bryson, Sheena Reilly and Field Rickards

Pediatrics 2016;137;
DOI: 10.1542/peds.2015-1722 originally published online December 24, 2015;

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/137/1/e20151722