Severe Hyperinsulinemic Hypoglycemia in a Neonate: Response to Sirolimus Therapy

Ünöke Méder, MD, a, Géza Bokodi, MD, PhD, a, Lídia Balogh, MD, PhD, a, Anna Körner, MD, PhD, a, Miklós Szabó, MD, PhD, a, Stepanka Pruhova, MD, PhD, b, Attila J. Szabó, MD, PhD, c

Abstract

Hyperinsulinemic hypoglycemia (HH) is one of the most common causes of persistent hypoglycemic episodes in neonates. Current pharmacologic treatment of neonatal HH includes diazoxide and octreotide, whereas for diffuse, unresponsive cases a subtotal pancreatectomy may be the last resort, with questionable efficacy. Here we report a case of congenital diffuse neonatal HH, first suspected when severe hypoglycemia presented with extremely high serum insulin levels immediately after birth. Functional imaging and genetic tests later confirmed the diagnosis. Failure to respond to a sequence of different treatments and to avoid extensive surgery with predictable morbidity prompted us to introduce a recently suggested alternative therapy with sirolimus, a mammalian target of rapamycin inhibitor. Glucose intake could be reduced gradually while euglycemia was maintained, and we were able to achieve exclusively enteral feeding within 6 weeks. Sirolimus was found to be effective and well tolerated, with no major adverse side effects attributable to its administration.

Patient Presentation

Our patient, a male infant, was born by normal vaginal delivery during the 37th week of gestation after an uneventful pregnancy. Birth weight was 4400 g, and 1- and 5-minute Apgar scores were 10 and 10. Both parents and the baby’s 2 older siblings had unremarkable medical histories. A right-sided clavicular fracture was noted on first examination, which did not warrant additional intervention. Two hours after delivery, tremor and irritability were observed, with severe hypoglycemia (0.5 mmol/L, 9 mg/dL). High doses of intravenous glucose (up to 20 mg/kg per minute) and occasional glucagon boluses were needed to normalize the persistently low blood glucose levels. The diagnosis of hyperinsulinemic hypoglycemia (HH) was based on the clinical picture and on the laboratory values (glucose, 0.5 mmol/L; concomitant serum insulin, 130.7 μU/mL; growth hormone, 18.3 ng/mL; thyroid-stimulating hormone, 8.2 mU/L; free thyroxine, 20.5 pmol/L; cortisol, 835 nmol/L), and samples were sent for genetic testing.

Diazoxide therapy (with hydrochlorothiazide 1 mg/kg per day) was commenced on day 4 and was gradually increased to a maximum dose of 20 mg/kg per day without any effect. Somatostatin treatment (introduced as intravenous, subsequently modified to subcutaneous) was initiated on week 2 and increased to a maximum dose (35 μg/kg per day), but only a 20% reduction in total glucose requirements was achieved. On week 4 nifedipine was added to the therapeutic regimen, but it was discontinued after a week because of lack of response (Fig 1).
A recent report of a compound heterozygote for the known mutations in the \textit{ABCC8} gene: mutation p.Y512* (c.1536C>A M/n)1 inherited from the unaffected father and IVS36-13G>A (c.4412-13G>A, p.? M/n)2 inherited from the unaffected mother. Multidisciplinary discussions, involving the parents, were organized regarding treatment options, including a subtotal pancreatectomy. A mammalian target of rapamycin (mTOR) inhibitor in similar cases, was the parents was also obtained.

DISCUSSION

HH in neonates, formerly also described as nesidioblastosis or congenital hyperinsulinism, is characterized by unregulated and elevated insulin secretion of the pancreatic islet β cells, resulting in persistent hypoglycemia. This is a rare disease with an incidence of 1 in 50 000 live births, but significant variation has been reported.4 Early diagnosis and treatment are crucial to the appropriate management of HH. Histologic presentation may be focal or diffuse5 (and very rarely atypical6) based on the spread of affected regions in the pancreas. Differentiation between these subgroups can be made by using 18F 3,4-dihydroxyphenylalanine positron emission tomography scans.7 Several congenital mutations have been described that may have a role, and in \sim50% of the cases the adenosine triphosphate (ATP) sensitive K^+ channel in pancreatic β cells seems to play a key role in the uncontrolled insulin secretion.8 \textit{KCNJ11} and \textit{ABCC8} localized on chromosome 11p15.1 are responsible

<table>
<thead>
<tr>
<th>Week</th>
<th>Parenteral</th>
<th>Oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5 mg sirolimus once a day, which maintains a serum sirolimus level of 9.62 ng/mL.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.5 mg sirolimus once a day, which maintains a serum sirolimus level of 9.62 ng/mL.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.5 mg sirolimus once a day, which maintains a serum sirolimus level of 9.62 ng/mL.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.5 mg sirolimus once a day, which maintains a serum sirolimus level of 9.62 ng/mL.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.5 mg sirolimus once a day, which maintains a serum sirolimus level of 9.62 ng/mL.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.5 mg sirolimus once a day, which maintains a serum sirolimus level of 9.62 ng/mL.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.5 mg sirolimus once a day, which maintains a serum sirolimus level of 9.62 ng/mL.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.5 mg sirolimus once a day, which maintains a serum sirolimus level of 9.62 ng/mL.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.5 mg sirolimus once a day, which maintains a serum sirolimus level of 9.62 ng/mL.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.5 mg sirolimus once a day, which maintains a serum sirolimus level of 9.62 ng/mL.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.5 mg sirolimus once a day, which maintains a serum sirolimus level of 9.62 ng/mL.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.5 mg sirolimus once a day, which maintains a serum sirolimus level of 9.62 ng/mL.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.5 mg sirolimus once a day, which maintains a serum sirolimus level of 9.62 ng/mL.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.5 mg sirolimus once a day, which maintains a serum sirolimus level of 9.62 ng/mL.</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 1

Timeline of parenteral and enteral average glucose intake in relation to the changes in therapy.

![Graph showing glucose intake over weeks](image)

Functional imaging with 18F 3,4-dihydroxyphenylalanine positron emission tomography scan performed on week 6 confirmed diffuse pancreatic enhancement. Genetic tests subsequently showed a compound heterozygote for the known mutations in the \textit{ABCC8} gene: mutation p.Y512* (c.1536C>A M/n)1 inherited from the unaffected father and IVS36-13G>A (c.4412-13G>A, p.? M/n)2 inherited from the unaffected mother. Multidisciplinary discussions, involving the parents, were organized regarding treatment options, including a subtotal pancreatectomy. A mammalian target of rapamycin (mTOR) inhibitor in similar cases, was the parents was also obtained.
for coding the 2 subunits of these K-ATP channels.9

The primary goal of treatment is to achieve normoglycemia to prevent long-term neurologic damage.10 The treatment algorithm most widely accepted recommends the K-ATP agonist diazoxide as first-line therapy and the somatostatin analog octreotide as second-line therapy.11 The calcium channel blocker nifedipine has also been reported as an alternative in unresponsive cases.12 Focal lesions usually warrant surgical excision, whereas for therapy-resistant diffuse presentations the only treatment option available is subtotal or total pancreatectomy.13 Definitive success rates are high for the former, but about one-third of patients remain hyperinsulinemic after subtotal pancreatectomy, many develop exocrine pancreatic insufficiency, and nearly all will develop diabetes by adolescence.14

A recently published novel treatment option for HH of the newborn has been suggested including the immunosuppressant sirolimus, an mTOR inhibitor.3 No major adverse reactions were observed during the 1-year follow-up period in the 4 cases reported. This finding is reinforced by the latest case report of another infant.15 The suggested method of action of sirolimus includes the reduction of β cell proliferation, inhibition of insulin production,16 and induced peripheral insulin resistance.17

Our decision to proceed with this treatment option was prompted by the lack of response to standard therapies, with the aim to avoid the major adverse effects of subtotal pancreatectomy. The desired glycemic control was achieved within 6 weeks of initiating sirolimus treatment. A transient episode of NEC was observed after the introduction of sirolimus, which responded well to conservative treatment and subsequent termination of somatostatin therapy. Based on previously published evidence of somatostatin-related NEC,18 it was considered most likely that this adverse event was attributable to somatostatin rather than sirolimus. Although the side effects of elevated liver function, hypercholesterolemia, and hypertriglyceridemia were observed, they were mild, and improvement was seen with reduction in sirolimus dosage. Significant renal, hematologic, or pulmonary complications associated with sirolimus reported elsewhere19 were not experienced. Compliance with dietary and therapeutic recommendations took patience and full engagement with the parents.

CONCLUSIONS

We believe our case report adds to the growing evidence of published cases suggesting that sirolimus could be an effective and safe treatment option in therapy-resistant diffuse HH of the newborn.

ACKNOWLEDGMENTS

Professor Jan Lebl, MD, PhD, of the Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague, provided a detailed analysis of the genetic results.

We thank Professor Tivadar Tulassay of the 1st Department of Pediatrics, Semmelweis University Budapest, for his valuable comments and recommendations for this manuscript.

ABBREVIATIONS

ATP: adenosine triphosphate
HH: hyperinsulinemic hypoglycemia
mTOR: mammalian target of rapamycin
NEC: necrotizing enterocolitis

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

FUNDING: No external funding was secured for this case report. The molecular genetic analysis was supported by a grant from the Czech Ministry of Health (NT 11402).

POTENTIAL CONFLICT OF INTEREST: The authors have indicated they have no potential conflicts of interest to disclose.

REFERENCES

Severe Hyperinsulinemic Hypoglycemia in a Neonate: Response to Sirolimus Therapy
Ünoke Méder, Géza Bokodi, Lídia Balogh, Anna Körner, Miklós Szabó, Stepanka Pruhovalad and Attila J. Szabó
Pediatrics 2015;136;e1369; originally published online October 26, 2015; DOI: 10.1542/peds.2014-4200

Updated Information & Services
including high resolution figures, can be found at:
/content/136/5/e1369.full.html

Supplementary Material
Supplementary material can be found at:
/content/suppl/2015/10/21/peds.2014-4200.DCSupplemental.html

References
This article cites 19 articles, 6 of which can be accessed free at:
/content/136/5/e1369.full.html#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Endocrinology
/cgi/collection/endocrinology_sub
Fetus/Newborn Infant
/cgi/collection/fetus:newborn_infant_sub
Neonatology
/cgi/collection/neonatology_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2015 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.
Severe Hyperinsulinemic Hypoglycemia in a Neonate: Response to Sirolimus Therapy

Ünoke Méder, Géza Bokodi, Lídia Balogh, Anna Körner, Miklós Szabó, Stepanka Pruhova and Attila J. Szabó

Pediatrics 2015;136;e1369; originally published online October 26, 2015;
DOI: 10.1542/peds.2014-4200

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/136/5/e1369.full.html