for Risk on Nutritional Status and Growth [STRONGkids], Screening Tool for the Assessment of Malnutrition in Pediatrics [STAMP], and Paediatric Yorkhill Malnutrition Score [PYMS]) to children admitted to a tertiary children’s hospital in Iran. The goal of this study was to evaluate the nutritional status of hospitalized children in a tertiary pediatric hospital in Mashhad, Iran, and to compare the validity, ease of use, and the varying prevalence of malnutrition according to these 3 nutritional risk screening tools.

METHODS: Three nutritional risk score tools were applied to all patients, and patients were then classified into low-, medium-, and high-risk groups. The anthropometry of hospitalized children was determined and classified by using standard criteria. The validity and the ease of use of the tools were assessed.

RESULTS: Of the children classified, 30.6% were found to be undernourished based on their weight-for-height z score, and the prevalence of moderate and severe malnutrition was 22.8% according to height for age. PYMS identified 23.5% in the medium-risk group and 52.2% in the high-risk group. STAMP identified 20.9% in the medium-risk group and 69.6% in the high-risk group. STRONGkids classified 71.3% of children as medium risk and 7.8% as high risk. STAMP detected more malnourished children (21 of 21) compared with PYMS (20 of 21) and STRONGkids (17 of 21).

CONCLUSIONS: Nutritional risk screening tools were able to detect children at a higher risk of nutrition deterioration; however, variable utility was observed. Further assessment of NRS tools in developing countries is required. In these countries, PYMS was the most reliable tool.

Evaluating Quality of Life and Psychiatric Comorbidity in Children and Adolescents With Constipation (With or Without Fecal Incontinence) and Comparison With Healthy Counterparts

BACKGROUND AND OBJECTIVES: Constipation is one of the most common gastrointestinal problems among children. The behavioral and psychological problems associated with chronic constipation include a wide range of disorders that reduce quality of life. The objectives were to evaluate psychiatric disorders and quality of life in children and adolescents with constipation.

METHODS: In a case–control clinical trial, 55 children and adolescents with functional constipation and 55 without constipation were assigned to case and control groups, respectively. After taking the medical history and physical examination, we provided 3 questionnaires to parents, children, and adolescents: a demographic questionnaire, a pediatric quality of life questionnaire, and a strengths and difficulties questionnaire (SDQ). Collected data were coded and analyzed with SPSS (IBM SPSS Statistics, IBM Corporation).

RESULTS: The mean child self-reported and parent proxy–reported scores on the quality of life questionnaire were 54.67 ± 3.9 and 49.86 ± 3.2 for the case group and 63.26 ± 4 and 66.09 ± 3.4 for the control group. Only the parent-reported quality of life score was statistically different between case and control patients (P = .014). The emotional performance quality of life score was statistically different on both self-reported (P = .016) and parent-reported (P = .024) questionnaires. The total SDQ score was abnormal for 93% and 83% of case and control participants, respectively, which was an insignificant difference (P = .631). There was no statistically significant difference in SDQ subgroups and impact scores between the 2 groups.

CONCLUSIONS: Quality of life and emotional performance are impaired in children with functional constipation, and they should be screened for consequent disorders. Referring at-risk patients to related specialists might improve treatment and help control constipation.
Evaluation of Clinical Features of 238 Cases With Febrile Convulsion

BACKGROUND AND OBJECTIVE: Febrile convulsion (FC) is defined as a seizure triggered by fever in children between 6 months and 5 years of age without an underlying central nervous system infection. It is the most common cause of convulsion in childhood, and 3% to 4% of children experience FC at least once by 7 years of age. The objective was to evaluate clinical features, including demographics, laboratory findings, causes of fever, and FC duration among inpatients diagnosed and treated for FC.

METHODS: A total of 238 patients with the diagnosis of FC between May 2009 and May 2012 were included in the study. Demographic, clinical, and laboratory data of the patients were analyzed.

RESULTS: One hundred thirty-nine patients (58.5%) were male and 99 (41.5%) were female, for a male/female ratio of 1.4. Mean age of patients admitted with a first FC was 2.2 ± 1.1 years. The mean temperature measured rectally during the seizure was 38.7°C ± 0.5°C. Febrile convulsion was diagnosed as simple type in 198 (83.2%) and complex type in 40 (16.8%) of patients. Thirty-three (13.8%) patients developed a second seizure within 24 hours. Median convulsion duration was 2 minutes (range, 1–5). The most common fever etiology was upper respiratory tract infection, occurring in 131 (55%) cases.

CONCLUSIONS: Benign conditions, such as upper respiratory tract infections, are common causes of FC. A conservative approach is most appropriate in these cases.

Trends in Nonpolio Acute Flaccid Paralysis Incidence in India 2000 to 2013

BACKGROUND: Although the incidence of polio acute flaccid paralysis (AFP) has decreased in India, the non-polio AFP (NPAFP) rate has increased. Nationally, the NPAFP rate is 11.82 per 100,000 population, whereas the expected rate is 1 to 2 per 100,000 population. We examined the

Imelda Bennett, Lucy Plumb and Bianca Cuellar

Pediatrics 2015;135;S15

DOI: 10.1542/peds.2014-3330BB

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://pediatrics.aappublications.org/content/135/Supplement_1/S15.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: https://shop.aap.org/licensing-permissions/</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://classic.pediatrics.aappublications.org/content/reprints</td>
</tr>
</tbody>
</table>
Imelda Bennett, Lucy Plumb and Bianca Cuellar
Pediatrics 2015;135;S15
DOI: 10.1542/peds.2014-3330BB

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/135/Supplement_1/S15.2