Strategies to Decrease Pertussis Transmission to Infants

Kevin Forsyth, MD, PhD; Stanley Plotkin, MD; Tina Tan, MD; Carl Heinz Wirsing von König, MD

The Global Pertussis Initiative (GPI) is an expert scientific forum addressing the worldwide burden of pertussis, which remains a serious health issue, especially in infants. This age cohort is at risk for developing pertussis by transmission from those in close proximity. Risk is increased in infants aged 0 to 6 weeks, as they are too young to be vaccinated. Older infants are at risk when their vaccination schedules are incomplete. Infants also bear the greatest disease burden owing to their high risk for pertussis-related complications and death; therefore, protecting them is a high priority. Two vaccine strategies have been proposed to protect infants. The first involves vaccinating pregnant women, which directly protects through the passive transfer of pertussis antibodies. The second strategy, cocooning, involves vaccinating parents, caregivers, and other close contacts, which indirectly protects infants from transmission by preventing disease in those in close proximity. The goal of this review was to present and discuss evidence on these 2 strategies. Based on available data, the GPI recommends vaccination during pregnancy as the primary strategy, given its efficacy, safety, and logistic advantages over a cocoon approach. If vaccination during pregnancy is not feasible, then all individuals having close contact with infants <6 months old should be immunized consistent with local health authority guidelines. These efforts are anticipated to minimize pertussis transmission to vulnerable infants, although real-world effectiveness data are limited. Countries should educate lay and medical communities on pertussis and introduce robust surveillance practices while implementing these protective strategies.
produces partial protection mainly against severe disease; higher rates of immunity (80%–90%) do not occur until after administration of the third dose.2–5

In addition to being at increased risk for developing pertussis, infants also bear the greatest disease burden: they have the highest risk for pertussis-related complications and death because they are more susceptible to severe and fatal disease. A recent surveillance study of patients hospitalized with pertussis revealed that the hospitalization rate for infants <12 months old was notably higher at 38.8 per 100,000 population than the rate in patients younger than 16 years, which was 2.6 per 100,000.6 In infants, increased vulnerability was also observed during the 2010 and 2012 outbreaks. During the 2010 outbreak in California, 9477 individuals were diagnosed with pertussis, and although all age cohorts were affected, the highest rates of disease and hospitalization occurred in infants <6 months old.7 Similarly, in 2012, outbreaks occurred in several US states and a total of 48,277 cases were reported, with the highest incidence rates occurring in infants <1 year old.8 In the UK, a notable increase in pertussis activity occurred in 2011 through 2012.9 During that time, the highest incidence occurred in infants <3 months old, but a notable increase also occurred in the age cohort of ≥15 years. In addition, during those outbreaks the majority of deaths occurred in infants <3 months old. Thus, when considering prevention strategies against pertussis, it is critical to include approaches that prevent pertussis transmission to young infants.

GPI

GPI was initiated in 2001 to raise global awareness about pertussis, develop evidence-based recommendations for vaccination strategies to reduce the disease burden in infants, and prevent the waning of immunity in older children and adolescents. To achieve these goals, GPI convenes global and regional meetings, attended by experts from specialized fields, who work together to achieve a consensus on recommendations for immunization strategies that will be acceptable at local, national, and regional levels. Immunization strategies that focus on preventing transmission of B pertussis to infants, who can be unvaccinated or underprotected, have been a focal point of the most recent GPI meetings and published papers. Two such strategies are maternal immunization during pregnancy, which directly protects the infant through the passive transfer of antibodies from mother to fetus, and cocooning, which indirectly protects infants through the vaccination of individuals who are in close contact with them and are often the source of infection. This paper reviews and discusses empirical evidence related to both strategies and proposes public policy recommendations to help protect infants from the risk of developing pertussis.

VACCINATION AGAINST PERTUSSIS DURING PREGNANCY

Vaccination Recommendations and Uptake

There is strong evidence that the pregnancy booster directly protects young infants through the transfer of maternal pertussis antibodies, in addition to being effective, safe, and well tolerated. A key benefit of this approach is that it provides protection to the very young from birth until infant-generated immunity is achieved from the primary series of pertussis immunization. Vaccination during pregnancy is now recommended by the national health organizations of several countries. In the United States, the Advisory Committee on Immunization Practices (ACIP) of the Centers for Disease Control and Prevention (CDC) in 2011 recommended a pregnancy booster,10 and similar recommendations were adopted to protect newborns in Argentina, Belgium, Israel, New Zealand, and the United Kingdom.11,12 In the United Kingdom, in 2011, a steep increase in pertussis activity occurred that disproportionately affected infants, and in response to this resurgence, in 2012, the British Department of Health recommended that all women, during each pregnancy, be vaccinated against pertussis between 28 and 38 weeks’ gestation.11 Also in 2012, the ACIP modified its recommendation to advocate vaccination during each pregnancy,13 on the basis of evidence that antibody levels decline significantly 1 year postimmunization.14,15 In addition, 2 years postvaccination, antibody levels measured from cord blood were found to be too low to provide protection in infants.16 Thus, to optimize the concentration of antibodies transferred to the neonate near birth, ACIP now recommends that vaccination occur during the third trimester.16 Of note, 1 study found that the active transport of maternal immunoglobulin G does not substantially occur before 30 weeks’ gestation.17

Transfer of the Maternal Pertussis Antibodies After Vaccination

To date, several studies have confirmed that pertussis antibodies are transferred from mother to fetus after vaccination or natural infection.18–24 Only 1 randomized, double-blind, placebo-controlled clinical trial assessed maternal antibody transfer in infants born to women vaccinated during pregnancy.22 This phase 1–2, National Institutes of Health–funded trial found that vaccination in the third trimester produced a higher concentration of pertussis antibodies in infants at birth and age 2 months,
compared with infants of women who received placebo. Transplacental antibody transfer has been confirmed in other studies, which similarly found significantly higher antibody titers in the infants of women vaccinated before or during pregnancy.\(^{18,19}\) Finally, 1 study has observed higher pertussis antibody levels in infants at birth, presumably due to natural maternal infection.\(^{20}\)

Uptake of the pregnancy booster has been assessed in the United Kingdom and the United States after the formal recommendations. Although universal adoption has lagged greatly in both countries, uptake in the United Kingdom was higher overall: \(\sim 64\%\) of pregnant women were vaccinated 9 months postrecommendation.\(^{25,26}\) In contrast, 2 years after the US recommendation, a comparison across several studies finds great variability in coverage, ranging from 82\% to as low as 14\%.\(^{26–28}\) Adoption is likely influenced by physician attitudes, parental opinions, and logistics, among other factors. One logistic factor that might contribute to the greater uptake in the United Kingdom is that pregnant women receive their care from general practitioners, who are responsible for administering all vaccinations across all patients.\(^{26}\) In the United States, pregnant women are seen by obstetricians, who are less likely to routinely vaccinate patients.\(^{26}\) To date, there have been no assessments of vaccine coverage in pregnant women in developing countries.

Clinical Benefits Associated With Vaccination During Pregnancy

The first evidence demonstrating the effectiveness of vaccination during pregnancy for the prevention of infant disease comes from a study conducted in the United Kingdom that compared data before and after implementation of a pregnancy booster program in 2012. This program was created in response to a significant outbreak that began in 2011 and extended into 2012, with the number of reported cases peaking in October. During this outbreak, infants, especially those \(<3\) months old, were disproportionately affected.\(^{11,25}\) Laboratory-confirmed cases between January 2008 and September 2013 were extracted from a national reference. Maternal vaccine effectiveness (VE) and coverage were calculated based on 26,684 women with a live birth from October 1, 2012, to September 3, 2012, and across that time period, overall coverage was 64\%, peaking at 78\% during the beginning of 2013. Consistent with the rise in maternal coverage, the number of confirmed cases in infants \(<3\) months old during the first 9 months of 2013 was lower compared with the same period in 2012 (328 cases in 2012 vs 72 cases in 2013; 78\% decrease; 95\% confidence interval [CI] \(-72\) to \(-83\)). Of note, across the first 9 months of 2013, all age groups experienced a decrease in the number of confirmed cases, but the decrease in infants \(<3\) months old was proportionately the greatest. In addition, a comparison of reported cases between 2013 and 2011 found that infants \(<3\) months old were the only age cohort that had fewer cases in 2013 (73) compared with 2011 (118), consistent with the effectiveness of vaccination against pertussis during pregnancy. A decrease in pertussis-related hospitalizations was also proportionately greater in infants \(<3\) months old during the first 9 months of 2013 compared with the same time period in 2012 (440 in 2012 vs 140 in 2013; 68\% decrease; 95\% CI \(-61\) to \(-74\)). VE for vaccination \(\geq 7\) days before birth in infants \(<3\) months old was 91\% (95\% CI \(84\%\) to \(95\%\)). VE was affected by the timing of vaccination during pregnancy and was greatest (91\%) when it occurred \(\geq 28\) days before birth, presumably owing to an optimal quantity of antibodies being transferred to the neonate\(^{18–20,22–24,29}\); this timing also eliminates the mothers as a source of infection. By contrast, low VE (38\%) resulted when immunization occurred late in pregnancy, when it would be expected that minimal antibodies would be transferred and mothers might still be susceptible to infection. Although much remains unknown due to the limited data available, the results from this study suggest the likelihood that observed transfer of maternal pertussis antibodies after the pregnancy booster confers some protection in very young infants.\(^{22}\)

A second more recent study also analyzed data from the United Kingdom after implementation of the pregnancy booster program. This case-controlled study was designed to estimate VE for protecting infants against pertussis by analyzing data collected between October 2012 and July 2013, after the recommendation was made. Case infants \(<8\) weeks of age with laboratory-confirmed pertussis were identified in a national reference laboratory, and healthy controls were obtained from the pediatric practices of each case infant. The results found that significantly more mothers (71\%) of the controls were vaccinated against pertussis during pregnancy compared with the case mothers (17\%). The unadjusted VE was 91\% (95\% CI \(77\%\) to \(97\%\)), confirming that vaccination against pertussis during pregnancy was effective at reducing disease in newborns.

Safety of the Pertussis Vaccine During Pregnancy

An established record of safety is critical for recommending that all women receive the booster during pregnancy. To date, the research finds that vaccination against pertussis during pregnancy is well tolerated and not associated with any safety outcomes. Only 1 randomized, double-blind, placebo-controlled clinical trial assessed safety in infants born to pregnant women who received the vaccine.\(^{22}\) In this study, maternal and infant adverse events...
and infant growth and development until age 13 months were evaluated. No adverse events were observed and there were no differences in infant growth and development.

The safety of pertussis vaccination during pregnancy was also evaluated in 2 retrospective, observational studies conducted in the United Kingdom and the United States.\(^{30,31}\) The goal of both was to determine whether immunization was associated with an increased risk of adverse obstetric events or adverse birth or neonatal outcomes. Vaccinated pregnant women were identified within 2 large databases (US: California Vaccine Safety Datalink; UK: Clinical Practice Research Datalink), resulting in a cohort of 46,305 women who were then compared with matched unvaccinated controls. The adverse birth or neonate outcomes included preterm or small for gestational age birth, low birth weight, fetal distress, neonatal renal failure, and stillbirth. The adverse obstetric events included maternal hypertensive disorders, chorioamnionitis, maternal death, antepartum and postpartum hemorrhage, uterine rupture, placenta previa, vasa previa, and cesarean delivery. No increased risk of adverse birth or neonate outcomes was observed. In addition, no increased risk of adverse obstetric events was found with the exception of a small but statistically significant increased risk of chorioamnionitis diagnosis (6.1% vs 5.5% [adjusted relative risk estimate, 1.19; 95% CI 1.13 to 1.26]). However, given that the magnitude of risk was small, the authors stress that this finding should be interpreted with caution, especially since the study observed no associated increased risk of preterm birth, which is a major sequela of chorioamnionitis. An alternative explanation for the increased chorioamnionitis risk is that it reflects differences in diagnosis across the subjects in the study, as a review of the medical records found

that a diagnosis of chorioamnionitis had only a 50% positive predictive value for clinical symptoms consistent with the outcome. In total, the results from all these studies provide initial evidence that vaccination against pertussis during pregnancy is well tolerated and is not associated with an increased risk of adverse events.

One possible safety issue that has been raised is whether antibodies produced from pertussis vaccination during pregnancy will interfere with protection during the infant schedule, an outcome referred to as “blunting.” Three studies, including 1 randomized clinical trial, found that the immune response in infants after an acellular vaccine was not affected by neonatal antibodies generated by maternal immunization, whereas blunting resulted after a whole-cell vaccine.\(^{20,22,32,33}\)

Challenges to Implementing Vaccination During Pregnancy

Several challenges related to vaccination during pregnancy have been identified, including lack of perceived benefit by pregnant women, cost, lack of transportation, work commitments, and fear of needles.\(^{34}\) However, studies have highlighted that recommendations of healthcare providers (HCPs) are key to vaccine uptake, as is educating pregnant women on the benefits of immunization for the young infant.\(^{34,35}\) In 1 survey-based study, although the majority of women (80%) reported willingness to be vaccinated against pertussis during pregnancy should it be recommended, 45% had never heard of the vaccine, had never thought about it, or were undecided about having it.\(^{35}\)

Clinical Benefits Associated With Cocooning

The effectiveness of the cocoon strategy on pertussis-related outcomes has been evaluated in 2 small studies to date.\(^{42}\) The first found that postpartum vaccination targeting only mothers was not associated with a decrease in the number of pertussis cases.\(^{42}\) The authors concluded that extending vaccination to all individuals who are in close contact with newborns may be more effective. In contrast, a more recent case-control study conducted to assess the effectiveness of a government-funded cocoon program found the vaccination strategy to be effective at preventing disease in young infants.\(^{43}\) The program was implemented during a pertussis epidemic in Australia. In the study, laboratory-confirmed pertussis cases occurring in young infants <4 months old were identified and then the parental
reported vaccination status was ascertained. Cocooning was defined as vaccination occurring ≥4 weeks before the case symptom onset in the young infants. The results found that the mothers of infants diagnosed with pertussis were less likely to have been immunized (22% vs 32%), as were the fathers (20% vs 31%). Parental cocooning was found to decrease the risk of pertussis by 51% in the infants.

The effectiveness of cocooning on pertussis-related outcomes has also been evaluated using computer simulations and statistical analyses. Several studies (from Canada, Italy, and the United States) have estimated effectiveness by calculating the number needed to vaccinate to prevent pertussis outcomes.44–46 Three of the analyses suggested that under the conditions of low pertussis incidence, the cocoon strategy is not efficient and would be very resource-intensive owing to the large numbers of individuals who would need to be vaccinated to prevent disease-related outcomes.44–46 In contrast, a fourth study that compared various vaccination strategies found that the cocooning of parents of newborns paired with an adult booster would maintain a low level of pertussis incidence while being the most cost-effective approach over a wide range of scenarios.47 These strategies included combinations of the infant primary series, adolescent booster, cocooning, and adult booster.

The cost-effectiveness of cocooning has also been analyzed. Using dynamic population effects, cocooning has been found to reduce the costs associated with pertussis.48 Similarly, another model, using a base-case analysis, estimated that cocooning would be cost-effective from both a payer and societal perspective, as it was associated with the highest number of quality-adjusted life-years gained (although this observation was mostly in adults).49 However, this model estimated that cocooning would be more expensive to implement than other strategies designed to protect infants from pertussis.

Challenges to Implementing Cocooning

For cocooning to successfully prevent pertussis transmission to newborns, several challenges arise based on the need to vaccinate multiple individuals. First, this strategy can be very costly and resource-intensive in terms of securing not only adequate staff but also reimbursement or alternative funding for the vaccines.41 A second key challenge to implementing cocooning is acceptance by the newborn’s family and close contacts. Vaccination uptake can be increased in family members and close contacts by improving logistics. For example, several studies found that most family members are receptive to being immunized against pertussis if the vaccination is made easily accessible (eg, during routine hospital, clinic, or office visits).41,50–52 Consistent with this, 1 study in a neonatal ICU determined that length of hospital stay affected cocooning implementation, as the shorter the infant’s stay, the less likely it was that the family would be vaccinated.53 These studies found that vaccine uptake was greatest in mothers (75%–86%)41 compared with fathers (58%), aunts (19%), or grandparents (12%).50 Acceptance of cocooning can also be increased when both family members and HCPs perceive a benefit to the newborn from cocooning. This was highlighted by a recent educational program implemented in an Italian hospital.54 Initially, a free postpartum DTaP booster dose was offered to parents and household contacts, but only 3% of the invited families participated. To increase uptake, an educational program was introduced, HCPs were recruited and engaged, and interactions with the families were increased during visiting hours. These approaches proved successful, and by the end of the pilot program, 79% of the new mothers were vaccinated. Consistent with this, another study found that although many new parents’ knowledge about pertussis was scarce, many (mothers:
64%; fathers: 59%) accepted vaccination if it was recommended by a healthcare provider.\(^{55}\)

Additional challenges to consider when implementing cocooning include changes in disease epidemiology and geographic differences in child-rearing practices, both of which will affect how the strategy should be adapted to meet local needs. For example, complete cocooning was successfully implemented (76% of families with newborns) in a hospital-based vaccine clinic during a 2010 pertussis outbreak.\(^{51}\) In contrast, during 2 control (nonoutbreak) periods, only 29% of the families achieved a complete cocoon. Local sociologic factors also need to be considered if cocooning is to be implemented successfully, and high adherence rates are to be ensured. For example, in some geographic regions, family units may consist of a small number of individuals, the parents only, or a small number of siblings. In other areas, extended families are more common, necessitating the targeting of much wider groups.

A Comparison of the Cost-Effectiveness of Maternal Immunization Versus Cocooning

The cost-effectiveness of the 2 vaccination strategies has been compared using mathematical modeling. One study, using a Markov cohort model, found that the pregnancy booster was projected to be more cost-effective, and also associated with a reduction in pertussis-related outcomes in infants.\(^{56}\) The pregnancy booster could attenuate the number of cases by 33% (vs 20% for cocooning), hospitalizations by 38% (vs 19%), and deaths by 49% (vs 16%). Of note, the model found that postpartum vaccination of the father plus 1 grandparent would decrease the number of cases by an additional 16%, but at a higher cost. Vaccination during pregnancy produced a cost per quality-adjusted life-year that was considerably less ($414 523 vs $1 172 825) than cocooning.

GPI RECOMMENDATIONS

Based on available evidence, the GPI recommends maternal immunization during pregnancy as the primary strategy (Fig 1). If maternal immunization is not possible, or if families desire additional protective measures for their newborns, then it is recommended that all individuals having close contact with infants <6 months old be immunized consistent with local health authority guidelines. A high priority should be given to achieving a complete cocoon, defined as full immunization of the family, since the robustness of protection against pertussis is a function of the number of infant contacts vaccinated. If a complete cocoon is not possible, then the next priority is vaccination of both parents, followed by the mother only (Fig 1). For families using cocooning, immunization should occur during the pregnancy or immediately postpartum to prevent pertussis transmission to infants <6 months old. It is important to note, however, that real-world data remain limited on the clinical effectiveness of vaccination against pertussis during pregnancy and of cocooning, especially in the form of large clinical trials. As we expect future studies will yield new data, these will be incorporated into future recommendations.

10. CDC. Updated recommendations for use of tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccine (Tdap) in pregnant women and persons who have or anticipate having close contact with an infant aged <12 months—Advisory Committee on Immunization Practices (ACIP), 2011. *MMWR Morb Mortal Wkly Rep*. 2011;60(41):1424–1426.

35. Wiley KE, Massey PD, Cooper SC, Wood N, Quinn HE, Leask J. Pregnant women's intention to take up a post-partum pertussis vaccine, and their willingness to take up the vaccine while pregnant: a cross sectional survey. *Vaccine*. 2013;31(37):3972–3978

47. Dylag AM, Shah SI. Administration of tetanus, diphtheria, and acellular pertussis vaccine to parents of high-risk infants in the neonatal intensive care unit. *Pediatrics*. 2008;122(3). Available at: www.pediatrics.org/cgi/content/full/122/3/e550

Strategies to Decrease Pertussis Transmission to Infants

Kevin Forsyth, Stanley Plotkin, Tina Tan and Carl Heinz Wirsing von König

Pediatrics 2015;135:e1475; originally published online May 11, 2015;

DOI: 10.1542/peds.2014-3925

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: /content/135/6/e1475.full.html</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 52 articles, 16 of which can be accessed free at: /content/135/6/e1475.full.html#ref-list-1</td>
</tr>
<tr>
<td>Citations</td>
<td>This article has been cited by 7 HighWire-hosted articles: /content/135/6/e1475.full.html#related-urls</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s): Infectious Disease /cgi/collection/infectious_diseases_sub Vaccine/Immunization /cgi/collection/vaccine:immunization_sub</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: /site/misc/Permissions.xhtml</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: /site/misc/reprints.xhtml</td>
</tr>
</tbody>
</table>
Strategies to Decrease Pertussis Transmission to Infants
Kevin Forsyth, Stanley Plotkin, Tina Tan and Carl Heinz Wirsing von König

Pediatrics 2015;135:e1475; originally published online May 11, 2015;
DOI: 10.1542/peds.2014-3925

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/135/6/e1475.full.html