Neonatal Intensive Care Unit Antibiotic Use

Joseph Schulman, MD, MSa, Robert J. Dimand, MDa, Henry C. Lee, MD[b,c], Grace V. Duenas, MPH[b,c], Mihoko V. Bennett, PhD[b,c], Jeffrey B. Gould, MD, MPH[b,c]

abstract

BACKGROUND AND OBJECTIVES: Treatment of suspected infection is a mainstay of the daily work in the NICU. We hypothesized that NICU antibiotic prescribing practice variation correlates with rates of proven infection, necrotizing enterocolitis (NEC), mortality, inborn admission, and with NICU surgical volume and average length of stay.

METHODS: In a retrospective cohort study of 52,061 infants in 127 NICUs across California during 2013, we compared sample means and explored linear and nonparametric correlations, stratified by NICU level of care and lowest/highest antibiotic use rate quartiles.

RESULTS: Overall antibiotic use varied 40-fold, from 2.4% to 97.1% of patient-days; median = 24.5%. At all levels of care, it was independent of proven infection, NEC, surgical volume, or mortality. Fifty percent of intermediate level NICUs were in the highest antibiotic use quartile, yet most of these units reported infection rates of zero. Regional NICUs in the highest antibiotic quartile reported inborn admission rate 218% higher (0.24 vs 0.11, P = .03), and length of stay 35% longer (90.2 days vs 66.9 days, P = .03) than regional NICUs in the lowest quartile.

CONCLUSIONS: Forty-fold variation in NICU antibiotic prescribing practice across 127 NICUs with similar burdens of proven infection, NEC, surgical volume, and mortality indicates that a considerable portion of antibiotic use lacks clear warrant; in some NICUs, antibiotics are overused. Additional study is needed to establish appropriate use ranges and elucidate the determinants and directionality of relationships between antibiotic and other resource use.

WHAT’S KNOWN ON THIS SUBJECT: Although treatment of infection is a mainstay of neonatal intensive care, little attention has focused on the proportion of patient antibiotic exposures validated by clinical indications that are unambiguous.

WHAT THIS STUDY ADDS: Septic workups in 127 California NICUs reveal similar burdens of proven infection, yet patient antibiotic exposures in those NICUs vary 40-fold. Because antibiotic stewardship principles dictate that antibiotic use should correlate with burden of infection, some NICUs overuse antibiotics.
Wide variation in hospital resource use with little connection to patient outcomes has been reported for diverse care contexts. These patterns challenge the belief that directing incrementally more resources at certain health care problems necessarily produces incrementally better results. For instance, the Centers for Disease Control and Prevention estimates that as much as 50% of prescribed antibiotics are either unnecessary or suboptimally effective as prescribed.\(^2\)

Wide variation in outcomes has also been documented among NICUs.\(^3\) However, relatively little information is available connecting NICU resource use with patient outcomes. Prevention of central line associated bloodstream infection (CLABSI) and other hospital-acquired infection in the NICU has been a recent target of quality improvement efforts.\(^5\)–\(^7\) Such efforts share the broader strategic objective of reducing health care misuse (1 of 3 categories of quality problems, along with underuse and overuse).\(^8\) In 2012, more than 60% of NICUs in California reported a CLABSI rate of zero.\(^9\) It is unclear whether reported success of such infection prevention efforts affects the perceived overall burden of NICU infection and consequent use of antibiotics. Antibiotics used in circumstances where patient benefits are not clearly demonstrable would constitute overuse.\(^10\) Eliminating overuse is considered perhaps the most effective way to improve quality and reduce cost,\(^10\) yet the strategy has largely been neglected in quality improvement research and interventions.\(^11\)

Antibiotics are commonly used drugs in NICUs.\(^12\) If overuse is occurring in the NICU, the consequences extend beyond unwarranted resource use and increased financial cost of care. Neonatal antibiotic exposure is associated with increased risk of necrotizing enterocolitis (NEC), nosocomial infection (NI), and mortality,\(^13\)–\(^15\) as well as with asthma later in life.\(^16\) Additionally, antimicrobial use is associated with the selection of multidrug-resistant pathogens, themselves associated with increased morbidity, mortality, cost, and length of stay.\(^17\) To explore the possibility of overuse of antibiotics for neonates, we measured NICU antibiotic practice variation and examined relationships with proven infection and other factors unambiguously connected with antibiotic exposure.

METHODS

California Children’s Services (CCS), within the California Department of Health Care Services, confers state approval for 3 levels of NICU care: regional, community, and intermediate,\(^18\) generally corresponding to American Academy of Pediatrics levels IV, III, and II, respectively.\(^19\) CCS standards include a requirement for annual data reporting of specific variables. Beginning in 2013, CCS required NICUs to report annual antibiotic use rate (AUR). All 116 CCS-approved NICUs submit their data to the California Perinatal Quality Care Collaborative (CPQCC),\(^4\) which prepares an annual report for each NICU and submits an aggregate data set to CCS. Of 136 NICUs in California,\(^20\) 132 participate in the CPQCC. Thus, the combined CPQCC/CCS data set approximates a population-based database describing NICU care and outcomes for most of the 503,738 total live births in California in 2013.\(^21\) The authors conducted the study analysis by using the CPQCC/CCS data set for calendar year 2013. This study was approved by the Stanford University Institutional Review Board.

Study Variable Definitions

AUR is the total number of patient-days in the reporting NICU, expressed as a percentage. With increasing adoption by hospitals of computerized provider order entry systems,\(^22\) NICUs were encouraged to obtain this information via a specifically designed database query, although not all units had this capability. Early onset sepsis (EOS) rate is the percentage of infants with bacterial or fungal infection diagnosed by blood culture within 2 days of birth. CLABSI rate is the number of laboratory confirmed bloodstream infections where a central line (including an umbilical catheter) was in place for >2 days on the date of the event per 1000 central-line days.\(^23\) Inborn admission rate is the proportion of all live births at a hospital who were admitted to the NICU. Number of surgical cases counts the number of patients undergoing a surgical procedure, excluding circumcision, cannulation/decanulation for extracorporeal membrane oxygenation, placement/removal of peritoneal dialysis catheters, chest tube placement, or central line placement. NICU mortality rate is the ratio of all NICU deaths to the total number of NICU admissions.

Certain CCS/CPQCC variables are restricted to infants who were 401 to 1500 g or 22 to 29 weeks’ gestation at birth. NI rate is the percentage of infants with bacterial or fungal infection diagnosed by blood culture or after 3 days after birth; fungal infection rate is the percentage of infants with a fungal infection diagnosed by blood culture on or after 3 days after birth; NEC rate is the percentage of infants diagnosed with NEC; and average length of stay (AvLOS) is the average NICU length of stay in days for patients discharged from the hospital.

Statistical Methods

The unit of observation and unit of analysis was the individual NICU. We stratified the overall analysis by NICU...
levels of care and lowest/highest AUR quartiles (quartile 1/quartile 4). Sample means were compared by analysis of variance; unequal variances were assessed by Bartlett’s test for equal variances. P values reflect 2-tailed distributions. We estimated the magnitude of linear correlation by Pearson’s correlation coefficient, unless extreme outlier values or unmet distributional assumptions warranted Spearman’s rank correlation. We used Stata 13 (Stata Corp, College Station, TX) for all computations and graphical displays.

RESULTS
Among 132 CPQCC NICUs, 5 reported either missing AUR or fewer than 1 of 100 patient-days (values considered clinically implausible), and were dropped from the analysis. The remaining 127 NICUs admitted 52,061 infants and provided care for 746,051 patient-days, of which 214,323 entailed antibiotic exposure. AUR variation is detailed in Fig 1 and Table 1. Overall, AUR varied 40-fold, from 2.4% of patient-days to 97.1% of patient-days (median = 24.5%; quartile 1 ≤17.5%, quartile 4 ≥33.5%). Regional NICU AUR varied almost sevenfold; community NICU AUR varied 12-fold; intermediate NICU AUR varied almost 31-fold; non-CCS NICU AUR varied almost fivefold. In either the overall or stratified analysis, there were no statistically significant correlations between AUR and proven infection, NEC, surgical case volume, or NICU mortality (Table 2). Comparing NICUs in the lowest quartile of AUR values with NICUs in the highest quartile revealed no significant difference in burden of proven infection, NEC, surgical case volume, or mortality rate (Table 2). Figure 2 illustrates no correlation between AUR and NI among NICUs in either the lowest or highest AUR quartile (Spearman’s correlation coefficient = 0.12, P = .51; and Pearson’s correlation coefficient = −0.02, P = .93, respectively). Table 3 describes the percentage of NICUs reporting specific proven infection rates of zero among providers in the lowest and highest AUR quartiles. The proportion of high quartile AUR NICUs with specific infection rates of zero is noteworthy, especially among intermediate NICUs. Examining AUR and other NICU resource use revealed no correlation between AUR and AvLOS overall, but they were positively correlated among regional-level NICUs (Fig 2; Pearson’s correlation coefficient = 0.78; P < .001). Compared with regional NICUs in the lowest AUR

FIGURE 1
Range of AUR values and distribution of AUR values by level of care. Left, Interquartile range and median AUR across all NICUs; lines above or below the box extend further by 1.5 times the interquartile range; dots mark extreme outliers. Right, AUR stratified by NICU level of care. Kernel density is essentially a smoothed frequency distribution histogram.
This study of the largest and most diverse NICU antibiotic use cohort to date (127 NICUs, 52,061 infants, and 746,051 patient-days) revealed the widest known scale of antibiotic prescribing practice variation. This variation is independent of proven infection burden, NEC, surgical volume, or mortality rate. Even when the focus is restricted to NICUs in the highest and lowest AUR quartiles, NICUs do not differ in proven infection burden, NEC, surgical volume, or mortality rates. Rather, they appear to differ only in their burden of suspected but unproven infection. Variation in antibiotic prescribing practice appears to hinge on variation in how practitioners frame, interpret, and respond to clinical situations ultimately considered unproven infection. Thus, a considerable portion of the observed variation in antibiotic use appears unwarranted; in some NICUs, antibiotics are overused.

Within a particular NICU level of care, the widest variation in AUR, 31-fold, occurred among intermediate level NICUs. Although these NICUs care for infants in the lower end of the severity of illness range, their median AUR was 27% greater than for community level NICUs, and the same as for regional NICUs (Table 1). In addition, 50% of all intermediate level NICUs are in AUR quartile 4 (Table 1), yet all those NICUs reported CLABSI, NI, and fungal infection rates of zero, and 57% reported EOS of zero (Table 3).

Earlier reports of antibiotic use are less comprehensive or specific, but their findings are consistent with our observations. Among 40 children’s hospitals, antibiotic-days ranged between 36.8% and 60.1% of patient-days; the variation was unexplained by patient- or hospital-level factors associated with antibiotic treatment. Among 29 NICUs, the point-prevalence of antibiotic use ranged between 15.2% and 85.7% of patients (median = 45.8%). Among 323 acute care hospitals, almost 56% of patients received antibiotics during their hospitalization. Finally, among 19 hospitals that reported antibiotic use to the National Healthcare Safety Network in 2012, critical care units reported a median of 937 days/1000 patient-days; ward locations, a median of 549 days/1000 patient-days; the widest variation between the 10th and 90th percentiles was threefold, among the ward locations. The consistency of our data with these earlier reports also mitigates concern over possible estimation errors in data reported by NICUs unable to obtain antibiotic use values via a specifically designed pharmacy database query; such NICUs instead depend upon manual abstraction of data from each medical record. Additionally to this point, if such potential errors were inaccurate in a systematic way, the effect on data patterns would tend to make it even more unlikely to find the observed absence of correlation detailed in Table 2.

Our data set accounts for almost all proven microbial infection. Although incidence of NI only reflects infants who were 401 to 1500 g or 22 to 29 weeks of gestation at birth, most NI occurs in this subpopulation.
TABLE 2 Estimation of Correlations With AUR and Correlate Variable Sample Means for Parameters 1 and 4

<table>
<thead>
<tr>
<th>Correlation Coefficient</th>
<th>P</th>
<th>AUR Quartile 1, Mean (95% CI)</th>
<th>AUR Quartile 4, Mean (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All NICUs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-CSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLABSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All NICUs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-CSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungal infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All NICUs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-CSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All NICUs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-CSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of surgical cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All NICUs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-CSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICU mortality rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All NICUs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-CSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inborn admission rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All NICUs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-CSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AvLOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All NICUs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-CSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CI, confidence interval; NA, not available.

a Distribution of values warrants nonparametric analysis: Spearman’s rank correlation computed.

b All NICUs reported a rate of 0.

Moreover, CLABSI (a substantial subset of NICU) was reported for all infants. The overall incidence of EOS is <1/1000 live births28,29, the median inborn admission rate in our study was 113/1000 live births. Thus, our findings are consistent with previous reports that revealed most NICU antibiotic use is empirical; in those studies the ultimate diagnosis is suspected infection, not proven infection12,30. A study of antibiotic use in 2 large NICUs in California revealed almost ninefold greater use of antibiotics for unproven infection than for proven infection as measured by CLABSI.30 It should be noted, however, that our data do not enable us to estimate such practice variation as treatment duration for proven infection, perioperative prophylaxis, or contaminating/colonizing organisms.

Current knowledge indicates that some clinical thresholds for initiating and/or continuing antibiotic courses for suspected infection can be raised without harm. Recent studies reveal that well-appearing term infants with negative blood cultures can have antibiotics discontinued after 48 to 72 hours even when their mothers were treated for chorioamnionitis.31–33 In 1 study, 24% of infants born to mothers with chorioamnionitis were treated with prolonged (>48 hours) antibiotics, but 84% of these infants received prolonged treatment solely on the basis of abnormal laboratory data.34 A new Bayesian approach to identifying EOS in infants ≥34 weeks’ gestation results in empirical antibiotic treatment of a much smaller proportion of this population (only 4%) and relies on evolving objective clinical findings to guide management of all lower risk infants.33 These authors estimate that their approach could decrease antibiotic treatment in as many as 240 000 newborns nationwide.33 In contrast to other reports,13–15 we did not find a relationship between...
AUR and NEC, NI, or mortality. Each of these previous studies analyzed duration of antibiotic exposure in individual patients during particular portions of the NICU hospitalization, such as the first week of life.13–15 Because the unit of observation and analysis in our study is the NICU, the previously reported associations could still be operating, but may be obscured by averaging exposure across all patients in an entire NICU and across entire hospital courses for all patients. The NICU-level unit of observation and analysis also precludes adjusting outcomes for differences in baseline characteristics among patients. For example, EOS incidence and case fatality are substantially higher in African American preterm infants compared with non-African American term infants.28 We mitigated this limitation to some degree by stratifying our analysis by NICU level, with large numbers of patients in each level.

Analytical limitations notwithstanding, the available evidence does not support the current range of practice in treating unproven infection. Case-mix adjustment is useful if study goals include a comparison among NICUs of proven infection and other factors unambiguously connected with antibiotic exposure. However, our primary study objective was to examine how NICU antibiotic practice variation relates with proven infection and other factors unambiguously connected with antibiotic exposure. Whether

TABLE 3 Percent of NICUs in the Lowest and Highest AUR Quartiles Reporting Proven Infection Rates of Zero

<table>
<thead>
<tr>
<th>AUR quartile 1</th>
<th>EOS = 0, %</th>
<th>NI = 0, %</th>
<th>CLABSI = 0, %</th>
<th>Fungal Infection = 0, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>All NICUs, n = 32</td>
<td>31</td>
<td>32</td>
<td>68</td>
<td>93</td>
</tr>
<tr>
<td>Regional, n = 4</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>Community, n = 23</td>
<td>22</td>
<td>26.1</td>
<td>65.2</td>
<td>95.6</td>
</tr>
<tr>
<td>Intermediate, n = 3</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Non-CCS, n = 2</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUR quartile 4</th>
<th>EOS = 0, %</th>
<th>NI = 0, %</th>
<th>CLABSI = 0, %</th>
<th>Fungal Infection = 0, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>All NICUs, n = 31</td>
<td>39</td>
<td>39</td>
<td>73</td>
<td>81</td>
</tr>
<tr>
<td>Regional, n = 7</td>
<td>14</td>
<td>0</td>
<td>14.3</td>
<td>42.9</td>
</tr>
<tr>
<td>Community, n = 14</td>
<td>36</td>
<td>14.3</td>
<td>84.6</td>
<td>85.7</td>
</tr>
<tr>
<td>Intermediate, n = 7</td>
<td>57</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Non-CCS, n = 3</td>
<td>67</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

FIGURE 2 Illustrative clinical and resource use correlates with AUR. Upper left, Strong positive correlation among regional-level NICUs between AUR and AvLOS. Upper center, right, Among regional- and intermediate-level NICUs AUR and inborn admission rate are positively correlated. Lower, No correlation with NI among NICUs in either the lowest or highest AUR quartiles. Straight lines = fitted values.
a relationship exists between those
indications for antibiotic treatment
and observed antibiotic use is
independent of case-mix; providers
generally agree that conditions like
proven infection or NEC warrant
antibiotic treatment (independent of
the particular local burden of illness
and case-mix).

During the past decade, some NICUs
caring for extremely low birth weight
neonates have been prescribing
fluconazole to prevent invasive
candidiasis.35–37 Our data are unable
to account for this practice, which is
not uniform across NICUs, and where
applied, would contribute to higher
AURs. This practice would not be
appropriate in intermediate level
NICUs, where AUR variation is
greatest.

Although AUR was independent of
clinical correlates, it sometimes was
correlated with resource use. At
regional-level NICUs, higher AUR was
correlated with both higher inborn
admission rates and higher AvLOS. At
intermediate-level NICUs, higher AUR
was correlated with higher inborn
admission rates. Elucidating the
determinants and directionality of
these relationships requires
additional investigation.

CONCLUSIONS

The 40-fold variation in antibiotic use
across California NICUs is
unsupported by the burden of proven
infection, other factors
unambiguously warranting antibiotic
exposure, or the peer-reviewed
literature. Currently measured rates
of proven infection provide an
incomplete and possibly misleading
description of NICU care relating to
imputed microbial disease. Therefore,
it is reasonable for other
organizations that track NICU
performance to add AUR to their
arrays of evaluative variables. The
goal of such benchmarking efforts
should be to identify warranted
ranges of AUR for NICUs providing
different levels of care.38

Additional

study is also needed to elucidate the
determinants and directionality of
relationships between AUR and other
resource use.

REFERENCES

York, NY: Oxford University Press; 2010
2. Centers for Disease Control and
Prevention. Antibiotic resistance threats
in the United States, 2013 report.
Available at: www.cdc.gov/
drugresistance/threat-report-2013/.
Accessed February 13, 2015
3. Vermont Oxford Network. Available at:
https://public.vtoxford.org/research/
database-qi-research/. Accessed
February 13, 2015
4. California Perinatal Quality Care
Collaborative. California Perinatal Quality
Care Collaborative (CPQCC). Available at:
www.cpqcc.org/research/publications.
Accessed February 13, 2015
5. Wirtschafter DD, Powers RJ, Pettit JS,
et al. Nosocomial infection reduction in
VLBW infants with a statewide quality-
improvement model. Pediatrics. 2011;
127(3):419–426
EF; Ohio Perinatal Quality Collaborative.
Ohio statewide quality-improvement
collaborative to reduce late-onset sepsis
in preterm infants. Pediatrics. 2011;
127(3):427–435
New York State Regional Perinatal Care
Centers. Statewide NICU central-line-
associated bloodstream infection rates
decline after bundles and checklists.
JAMA. 1991;266(24):3472–3473
Central line-associated bloodstream
infections (CLABSI) and central line insertion
practices (CLIP) in California hospitals, 2012.
Available at: www.cdph.ca.gov/programs/
ha/Pages/ CentralLineAssociatedBloodstreamInfections-
10. Chassin MR. Improving the quality of
health care: what’s taking so long?
Health Aff (Millwood). 2013;32(10):1761–1765
11. Korenstein D, Falk R, Howell EA, Bishop T,
Keyhani S. Overuse of health care
services in the United States: an
2012;172(2):171–178
12. Grohskopf LA, Huskins WC, Sinkowitz-
Cochran RJ, Levine GL, Goldmann DA,
Jarvis WR. Pediatric Prevention Network.
Use of antimicrobial agents in United
States neonatal and pediatric intensive
24(6):766–773
Neonatal Research Network. Prolonged
duration of initial empirical antibiotic
treatment is associated with increased
rates of necrotizing enterocolitis and
death for extremely low birth weight
Antibiotic exposure in the newborn
intensive care unit and the risk of
2011;159(3):392–397
15. Kuppala VS, Meinzen-Derr J, Morrow AL,
Schibler KR. Prolonged initial empirical
antibiotic treatment is associated with
adverse outcomes in premature infants.
antibiotic treatment is a risk factor for
697–702
17. Patel SJ, Saiman L. Antibiotic resistance
in neonatal intensive care unit
pathogens: mechanisms, clinical impact,
and prevention including antibiotic
547–563
18. California Department of Health Care
Services. Provider standards. Available
at: www.dhcs.ca.gov/services/ccs/Pages/
ProviderStandards.aspx#nicu. Accessed
July 17, 2014
19. American Academy of Pediatrics
Committee on Fetus and Newborn.
2012;130(3):587–597
Newborn Intensive Care Units (NICUs) and
Neonatologists of the USA and
Canada. Elk Grove Village, IL: Section on
Perinatal Pediatrics, American Academy
of Pediatrics; 2011
21. Hamilton BE, Martin JA, Osterman M,
Curtin SC. Births: Preliminary Data for

Neonatal Intensive Care Unit Antibiotic Use
Joseph Schulman, Robert J. Dimand, Henry C. Lee, Grace V. Duenas, Mihoko V. Bennett and Jeffrey B. Gould

Pediatrics 2015;135;826; originally published online April 20, 2015; DOI: 10.1542/peds.2014-3409

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: /content/135/5/826.full.html</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 26 articles, 15 of which can be accessed free at: /content/135/5/826.full.html#ref-list-1</td>
</tr>
<tr>
<td>Citations</td>
<td>This article has been cited by 3 HighWire-hosted articles: /content/135/5/826.full.html#related-urls</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s): Fetus/Newborn Infant /cgi/collection/fetus:newborn_infant_sub Neonatology /cgi/collection/neonatology_sub Infectious Disease /cgi/collection/infectious_diseases_sub</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: /site/misc/Permissions.xhtml</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: /site/misc/reprints.xhtml</td>
</tr>
</tbody>
</table>
Neonatal Intensive Care Unit Antibiotic Use
Joseph Schulman, Robert J. Dimand, Henry C. Lee, Grace V. Duenas, Mihoko V. Bennett and Jeffrey B. Gould

Pediatrics 2015;135:826; originally published online April 20, 2015; DOI: 10.1542/peds.2014-3409

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/135/5/826.full.html