POLICY STATEMENT

Immunization for *Streptococcus pneumoniae* Infections in High-Risk Children

abstract

Routine use of the pneumococcal conjugate vaccines (PCV7 and PCV13), beginning in 2000, has resulted in a dramatic reduction in the incidence of invasive pneumococcal disease (IPD) attributable to serotypes of *Streptococcus pneumoniae* contained in the vaccines. The Advisory Committee on Immunization Practices of the Centers for Disease Control and Prevention and the American Academy of Pediatrics recommend the expanded use of PCV13 in children 6 through 18 years of age with certain conditions that place them at elevated risk of IPD. This statement provides recommendations for the use of PCV13 in children 6 through 18 years. A single dose of PCV13 should be administered to certain children in this age group who are at elevated risk of IPD. Recommendations for the use of PCV13 in healthy children and for pneumococcal polysaccharide vaccine (PPSV23) remain unchanged. *Pediatrics* 2014;134:1230–1233

INTRODUCTION

Invasive disease attributable to *Streptococcus pneumoniae* remains a significant public health problem in children despite widespread use of pneumococcal conjugate vaccines (PCV7 and PCV13; Prevnar; Pfizer, Inc, New York, NY) in US infants 2 through 59 months of age. After the introduction of PCV7 and subsequently PCV13, dramatic decreases in invasive pneumococcal disease (IPD) attributable to vaccine serotypes were noted in young children. However, IPD caused by vaccine serotypes continues to occur in older children with immunodeficiency and certain other high-risk conditions, prompting the need for vaccination recommendations to include these populations.

BACKGROUND AND RATIONALE

S. pneumoniae is a leading cause of serious infections, including sepsis and meningitis, and accounts for significant morbidity and mortality in the United States.1 PCV13 was licensed by the Food and Drug Administration for prevention of IPD and otitis media in infants and young children in February 2010, when it replaced PCV7.2 PCV13 is recommended for all children 2 through 59 months of age and for children 60 through 71 months of age with chronic medical conditions (eg, heart disease and diabetes); immunocompromising conditions (eg, HIV infection), including functional or anatomic asplenia, including sickle cell disease; cerebrospinal fluid (CSF) leaks; or cochlear implants (Table 1). For children 6 through 18 years with these same high-risk conditions,
only PPSV23 has been routinely recommended, although there has been a permissive and off-label recommendation by the Advisory Committee on Immunization Practices (ACIP) of the Centers for Disease Control and Prevention (CDC) for use of PCV13.2

In June 2012, the ACIP recommended routine use of PCV13 in addition to PPSV23 for PCV13-naive adults ≥19 years of age with immunocompromising conditions, including functional or anatomic asplenia, including sickle cell disease; CSF leaks; or cochlear implants. In June 2013, the ACIP recommended routine use of PCV13 for children 6 through 18 years of age with these same conditions who have not previously received PCV13.4 PCV13 should be administered to these children regardless of whether they received PCV7 or PPSV23 previously. Recommendations for PPSV23 use for children remain unchanged.

EVIDENCE TO SUPPORT THE RECOMMENDATION

Pneumococcal conjugate vaccines have decreased the rates of IPD directly in vaccinated children and indirectly (herd protection) in unvaccinated people.2 From 2007 through 2009, the average annual incidence of IPD among children 6 through 18 years of age was 2.6 cases per 100,000 population, with 57% of IPD caused by serotypes included in PCV13 (CDC, Active Bacterial Core surveillance 2007–2009, unpublished data, 2013). Among immunocompromised children 6 through 18 years of age, 49% of IPD was caused by serotypes included in PCV13, and an additional 23% of IPD was caused by serotypes included in PPSV23. Incidence of IPD caused by serotypes included in PCV13 among children 6 through 18 years of age with hematologic malignancies was estimated at 1282 per 100,000 population. Compared with children without this condition, this is a rate ratio (RR) of 822 (95% confidence interval [CI], 687–983). For children with HIV infection, the incidence was 197 per 100,000 population (RR, 122; CI, 94–161), and for children with sickle cell disease, the incidence was 56 (RR, 27; CI, 9–73) (CDC, Active Bacterial Core surveillance 2007–2009, unpublished data, 2013). Children with certain chronic diseases (eg, cardiac or lung disease) are also known to have elevated risk of IPD but at levels lower than those among children with HIV infection.2,5

PCV13 Efficacy and Safety Among Immunocompromised People

Studies of pneumococcal conjugate vaccines containing similar but fewer antigens have been conducted among people with immunocompromising conditions. From a randomized controlled trial among HIV-infected children 2 through 45 months of age in South Africa, the efficacy of a 9-valent pneumococcal conjugate vaccine (PCV9) was estimated as 65% (CI, 24%–86%) against IPD and 13% (CI, −7%–29%) against radiologically confirmed pneumonia.6 Vaccine efficacy of PCV7 against IPD caused by a serotype contained in the vaccine in HIV-infected adults in Malawi was estimated at 74% (CI, 50%–90%).7 An observational study conducted in the United States among children ≤10 years of age with sickle cell disease estimated vaccine effectiveness against IPD to be 81% (CI, 19%–96%) among those who

TABLE 1 Underlying Medical Conditions That Are Indications for Pneumococcal Immunization Among Children, by Risk Groupa and Recommended Vaccines

<table>
<thead>
<tr>
<th>Risk Group</th>
<th>Condition</th>
<th>PCV13</th>
<th>PPSV23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunocompetent children</td>
<td>Chronic heart diseaseb</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Chronic lung diseaseb</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Diabetes mellitus</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>CSF leaks</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Cochlear implant</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Children with functional or anatomic asplenia</td>
<td>Sickle cell disease and other hemoglobinopathies</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Congenital or acquired asplenia or splenic dysfunction</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Children with immunocompromising conditions</td>
<td>HIV infection</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Chronic renal failure and nephrotic syndrome</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Diseases associated with treatment with immunosuppressive drugs or radiation therapy, including malignant neoplasms, leukemias, lymphomas, and Hodgkin disease, or solid organ transplantation</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Congenital immunodeficiency</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

b Repeat PPSV23 doses should be 5 y after the first dose.

c Including asthma, if treated with prolonged high-dose oral corticosteroids.

d Particularly cyanotic congenital heart disease and cardiac failure.

e Includes B- (humoral) or T-lymphocyte deficiency; complement deficiencies, particularly C1, C2, C3, and C4 deficiency; and phagocytic disorders (excluding chronic granulomatous disease).
POLICY RECOMMENDATIONS
The following recommendation is new and not included in any previous American Academy of Pediatrics (AAP) policy.

Children 6 Through 18 Years of Age With Conditions That Place Them at Highest Risk
A single dose of PCV 13 should be given to children 6 through 18 years of age who have immunocompromising conditions, including HIV infection and functional or anatomic asplenia, including sickle cell disease; CSF leaks; or cochlear implants and who have not previously received PCV13. PCV13 should be administered to these children regardless of whether they received PCV7 or PPSV23 previously. Children in this group who have not previously been immunized with PPSV23 should receive a dose of PPSV23 ≥8 weeks after their dose of PCV13. For children in this group who have been previously immunized with PPSV23, a single dose of PCV13 should be given ≥8 weeks after the PPSV23 dose.

The following recommendation is unchanged from previous AAP policy.

Children 6 Through 18 Years of Age With Conditions That Place Them at Highest Risk
A second PPSV23 dose is recommended 5 years after the first PPSV23 dose for children with anatomic or functional asplenia, including sickle cell disease, HIV infection, or other immunocompromising conditions. This second dose is not recommended for children with cochlear implants or CSF leaks.

Immunocompetent Children 6 Through 18 Years of Age With Conditions That Place Them at Elevated Risk
Immunocompetent children who have underlying medical conditions that place them at elevated risk for IPD (Table 1) may also receive PCV13 if they have not previously received PCV13 and regardless of whether they have received PCV7 in the past. If both PCV13 and PPSV23 are used, PCV13 should be administered first, and the administration of PPSV23 should follow at an interval of ≥8 weeks. A second dose of PPSV23 is not recommended for this group of children.

Recommendations for the use of PCV13 for children younger than 60 months of age and the use of PPSV23 for children of all ages are unchanged. PCV13 is approved for the Vaccines for Children program through 18 years of age, and the vaccine will be covered by the Vaccine Injury Compensation Program. PPSV23 is not covered by the Vaccine Injury Compensation Program.

PPSV23 in Immunocompromised Children
PPSV23 contains 12 of the serotypes included in PCV13, plus 11 additional serotypes, which account for 23% of IPD cases among immunocompromised children 6 through 18 years of age (CDC, Active Bacterial Core surveillance 2007–2009, unpublished data, 2013). PPSV23 currently is recommended for children ≥2 years of age with elevated risk of IPD.4 Given the high burden of IPD caused by serotypes included in PPSV23 but not in PCV13, broader protection should be provided through use of both PCV13 and PPSV23.
REFERENCES

(Continued from first page)
Immunization for *Streptococcus pneumoniae* Infections in High-Risk Children

COMMITTEE ON INFECTIOUS DISEASES

Pediatrics 2014;134;1230

DOI: 10.1542/peds.2014-2811 originally published online November 24, 2014;

Updated Information & Services

including high resolution figures, can be found at:

http://pediatrics.aappublications.org/content/134/6/1230

References

This article cites 9 articles, 3 of which you can access for free at:

http://pediatrics.aappublications.org/content/134/6/1230.full#ref-list-1

Subspecialty Collections

This article, along with others on similar topics, appears in the following collection(s):

Infectious Disease

http://classic.pediatrics.aappublications.org/cgi/collection/infectious_diseases_sub

Permissions & Licensing

Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:

https://shop.aap.org/licensing-permissions/

Reprints

Information about ordering reprints can be found online:

http://classic.pediatrics.aappublications.org/content/reprints
ERRATA

An error occurred in the AAP policy statement “Immunization for *Streptococcus pneumoniae* Infections in High-Risk Children” published in the December 2014 issue of *Pediatrics* (2014;134[6]:1230–1233). In Table 1 (p 1231), the rows were incorrectly formatted. In the Condition column, the row for “Congenital or asplenia or splenic dysfunction” should have an X under “Recommended” for PCV13 and should have an X under “1 Dose” and “Repeated Dose” for PPSV23. The electronic version of the statement that is posted online has been corrected.

doi:10.1542/peds.2015-0451

On page 516, under Results paragraph 1, on lines 1–10, this reads: “Overall, 707 (83.7%) of the 845 pooled cases (ie, all sites combined) were classified as definite; case status for 82.0% of definite cases was based on DNA analysis demonstrating a dystrophin mutation (Table 1). Among the 765 definite and probable cases, most were non-Hispanic white (57.6%), diagnosed with DMD (79.6%), and the only case in the family (78.6%);” This should have read: “Overall, 707 (83.7%) of the 845 pooled cases (ie, all sites combined) were classified as definite (Table 1); case status for 82.0% of definite cases was based on DNA analysis demonstrating a dystrophin mutation (data not shown). Among the 765 definite and probable cases, most were non-Hispanic white (57.6%), diagnosed with DMD (71.0%), and the only case in the family (78.6%);”

On page 517, under Results paragraph 3, on lines 17–19, this reads: “Prevalence for all age groups combined was 1.12 for DMD and 0.26 for BMD;” This should have read: “Prevalence for all age groups combined was 1.02 for DMD and 0.36 for BMD;”

On page 518, under Discussion paragraph 3, on lines 8–12, this reads: “It also was less comparable to other studies of original data on prevalence of DBMD among all male individuals in the population.” This should have read: “It also was less comparable to other studies of original data on prevalence of DBMD among all male individuals in the population.”

doi:10.1542/peds.2015-0652

An error occurred in the article by Betancourt et al, titled “HIV and Child Mental Health: A Case-Control Study in Rwanda” published in the August 2014 issue of *Pediatrics* (2014;134[2]: e464–e472; doi:10.1542/peds.2013-2734). On page e464, in the abstract under the heading Results, lines 24–25 read: “These results remained significant after controlling for contextual variables.” This should have read: “After controlling for contextual variables, there were no significant differences on mental
Immunization for *Streptococcus pneumoniae* Infections in High-Risk Children

COMMITTEE ON INFECTIOUS DISEASES

Pediatrics 2014;134;1230
DOI: 10.1542/peds.2014-2811 originally published online November 24, 2014;

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://pediatrics.aappublications.org/content/134/6/1230

An erratum has been published regarding this article. Please see the attached page for:

http://pediatrics.aappublications.org/content/135/5/945.1.full.pdf