Parental Awareness and Use of Online Physician Rating Sites

WHAT’S KNOWN ON THIS SUBJECT: Public awareness and usage of physician-rating Web sites have been increasing over the last few years. Such ratings can influence adults’ decisions about choosing a physician, but their influence on decisions for children’s physicians has not been characterized.

WHAT THIS STUDY ADDS: In this nationally representative survey of parents, we found that the majority (74%) are aware of rating Web sites and slightly more than one-quarter (28%) had sought information on rating Web sites when choosing a primary care physician for their children.

abstract

BACKGROUND AND OBJECTIVE: The US public is increasingly using online rating sites to make decisions about a variety of consumer goods and services, including physicians. We sought to understand, within the context of other types of rating sites, parents’ awareness, perceptions, and use of physician-rating sites for choosing primary care physicians for their children.

METHODS: This cross-sectional, nationally representative survey of 3563 adults was conducted in September 2012. Participants were asked about rating Web sites in the context of finding a primary care physician for their children and about their previous experiences with such sites.

RESULTS: Overall, 2137 (60%) of participants completed the survey. Among these respondents, 1619 were parents who were included in the present analysis. About three-quarters (74%) of parents were aware of physician-rating sites, and about one-quarter (28%) had used them to select a primary care physician for their children. Based on 3 vignettes for which respondents were asked if they would follow a neighbor’s recommendation about a primary care physician and using multivariate analyses, respondents exposed to a neighbor’s recommendation and negative online ratings were significantly more likely to choose the recommended physician (adjusted odds ratio: 3.0 [95% confidence interval: 2.1–4.4]) than respondents exposed to the neighbor’s recommendation alone. Conversely, respondents exposed to the neighbor’s recommendation and positive online ratings were significantly less likely to choose the neighbor children’s physician (adjusted odds ratio: 0.09 [95% confidence interval: 0.03–0.3]).

CONCLUSIONS: Parents are beginning to use online physician ratings, and these ratings have the potential to influence choices of their children’s primary care physician. Pediatrics 2014;134:e966–e975

AUTHORS: David A. Hanauer, MD, MS,a,b,c,d,e,f Kai Zheng, PhD,a,d,e,f Dianne C. Singer, MPH,a Achamyeleh Gebremariam, MS,h and Matthew M. Davis, MD, MAPP(g,h,i)

aDivision of General Pediatrics, Department of Pediatrics; bCenter for Computational Medicine and Bioinformatics; cComprehensive Cancer Center; dMichigan Institute for Clinical and Health Research; eSchool of Information; fInstitute for Healthcare Policy and Innovation; gSchool of Public Health, Department of Health Management and Policy; hChild Health Evaluation and Research (CHEAR) Unit, Division of General Pediatrics; iDivision of General Medicine, Department of Internal Medicine, and jGerald R. Ford School of Public Policy, University of Michigan, Ann Arbor, Michigan

KEY WORDS: child, clinical competence, consumer health information, health care, Internet, online systems, parents, patient satisfaction, physicians, primary care physicians, quality indicators, surveys

ABBREVIATIONS
CI—confidence interval
NPCH—National Poll on Children’s Health
Dr Hanauer and Dr Zheng conceptualized and designed the study, designed the data collection instrument, drafted the initial manuscript, and critically reviewed and revised the manuscript; Ms Singer and Dr Davis conceptualized and designed the study, designed the data collection instrument, supervised the data collection of the online survey, and critically reviewed and revised the manuscript; Mr Gebremariam conducted the statistical analyses and critically reviewed and revised the manuscript; all authors approved the final manuscript as submitted.

Dr Davis serves as the chief medical executive for the State of Michigan Department of Community Health (MDCH). MDCH was not involved in this study, and the views expressed herein are those of the authors and are not necessarily the views of MDCH.

doi:10.1542/peds.2014-0681
Accepted for publication Jun 25, 2014
Address correspondence to David A. Hanauer, MD, MS, Department of Pediatrics, 5312 CC SPC 5940, 1500 E. Medical Center Dr, Ann Arbor, MI 48109-5940. E-mail: hanauer@med.umich.edu

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1088-4275).
Copyright © 2014 by the American Academy of Pediatrics

(Continued on last page)
The Internet has become a primary destination for consumers seeking information on a wide variety of products and services, including cars, cameras, and carpenters. Many Web sites provide product details and reviews, and they aggregate feedback from consumers. Such sites are often described as “reputation systems,” and the ratings can influence purchasing decisions. The trend is not surprising, because patients and families (ie, “consumers”) are increasingly turning to the Internet for health-related information. Consumers now have multiple online venues for seeking information on the pricing of health care services, as well as the quality of physicians.

The convenience and instant availability of online physician ratings have the potential to empower patients and families by providing them with information to make more informed decisions about health care costs and quality, and to encourage improved care among physicians. Online sites could also provide venues for families to express views that they might not otherwise feel comfortable sharing. However, the value of these Web sites and the ratings they provide have been questioned on multiple grounds. With criticisms that they lack standardization of rating methods, fail to ensure that ratings include a representative sample of patients for each provider, and have insufficient safeguards against excessively positive comments (eg, physicians’ self-promotion) or negative comments (eg, patients’ defamatory language).

We have previously reported on adults’ use of online physician ratings for themselves. Little is known, however, about the extent to which parents are aware of or use online physician ratings for selecting a child’s primary care physician. Although rating sites for general consumer goods have been well accepted by the public, the popularity of physician-rating sites is less clear, and it is common to find that restaurant ratings far outnumber physician ratings. To examine these issues in greater detail, we surveyed a nationally representative sample of parents about their views on physician-rating sites and how they have used them in selecting a primary care physician for their children.

METHODS

Study Design
As part of the C.S. Mott Children’s Hospital National Poll on Children’s Health (NPCH), we conducted a cross-sectional survey of adults (parents and nonparents) by using a nationally representative sample of the US population. The present study reports on parents in the sample who had ≥1 child aged <18 years living in the household. The NPCH is a recurring survey conducted by using the GfK KnowledgePanel, which covers ~97% of the US population, including households that only have cell phones. The KnowledgePanel has been used for other NPCH peer-reviewed publications related to health, including a recent publication associated with the present survey that focused on factors connected to adults choosing a physician for themselves. Surveys are conducted by using a Web browser, and participants complete the survey at their convenience during the study period. The survey completion rate was calculated according to the American Association for Public Opinion Research standard (response rate 1), and “break-offs” were not included. The University of Michigan institutional review board approved this study, with a waiver of informed consent because of de-identified data collection.

Participants
For the GfK KnowledgePanel, survey participants are initially identified randomly by using telephone numbers and residential addresses and are then invited by telephone or mail to join the survey panel. To mitigate bias toward building a panel that is more technologically savvy than the average person, free Internet access and a computer are provided for those without existing online survey access who wish to participate in the panel. KnowledgePanel participants are sent periodic e-mails inviting them to participate in various surveys, including those for the NPCH. Participants are compensated with “participation points” that can be redeemed for various goods and services offered by GfK. To address naturally occurring panel attrition and shifting demographic characteristics of the US population, the KnowledgePanel is refreshed with new participants on a routine basis.

A unique set of participants is drawn from the larger panel of candidates for each NPCH survey. The NPCH oversamples households with ≥1 child aged <18 years (hereafter referred to as “parents”) to ensure that such households are adequately represented in the sample. To avoid bias related to the subject matter, individuals invited to participate in the survey were not told ahead of time that the questions addressed the use of online rating sites or physician ratings.

Survey Items
A set of 23 questions related to physician-rating Web sites were included in the NPCH survey. The questions were developed by the study team who collectively had expertise in health services research, survey methods, and consumer and health informatics. Some
questions were directed at all respondents (parents and nonparents), and other questions were only for parents.

Vignettes

Parents were randomized to receive 1 of 3 vignettes about online physician ratings, designed to elucidate the relative importance of peer (neighbor) recommendations versus ratings on a Web site. Randomization to 1 of the 3 vignettes was performed by GfK with a random number generator implemented at the time that each respondent initiated the survey.

In each vignette, parents were presented with a scenario describing a situation requiring them to select a new primary care physician for their youngest child. In all 3 scenarios, a neighbor recommended her children’s physician, Dr Lee, and the participant was told that the new physician accepted their health insurance. In the first vignette, no language was included related to physician ratings. In the second vignette, the participant was told that Dr Lee had one of the top ratings on a physician-rating Web site. In the third vignette, the participant was told that Dr Lee had one of the lowest ratings on a physician-rating site. Participants were then asked how likely they were to pick the physician recommended by their neighbor, using a 4-point Likert scale (ie, very likely, somewhat likely, somewhat unlikely, very unlikely).

Survey Administration

The NPCH survey was piloted by GfK in August 2012 by using a convenience sample of 117 KnowledgePanel members. The pilot was conducted to ensure that the questions could be understood and answered adequately by the respondents, and it included a free-text section for pilot survey participants to enter additional responses that they felt would be appropriate for answering the questions. The final survey removed the free-text boxes and only included the original coded choices because the pilot showed that they were sufficient for the participants to answer the questions. Responses from the pilot survey were not retained. The final survey was administered in September 2012.

Statistical Analyses

The study team was given de-identified survey results by GfK, and the results were weighted by using census-based weights to match the US population distribution based on factors that included respondent age, gender, race/ethnicity, and census region. All analyses were conducted by using Stata version 12 (Stata Corp, College Station, TX), and differences among groups were determined by using the χ² test. For the results reported, the denominator varied by item, partly because of the conditional nature of some questions based on previous responses and because of isolated nonresponses (all <1%) for other items. Adjustments for nonresponses to individual items were not made, and no data were imputed.

RESULTS

Of the 3563 participants invited to take the survey, 2137 (60%) completed it. Among these respondents, 1619 (76%) were parents, and these were included in the present analysis. Demographic characteristics of the respondents are presented in Table 1.

Parents reported incorporating a variety of sources when making decisions about selecting a primary care physician (Table 2). The factor most commonly endorsed as “very important” was whether the physician accepts their children’s health insurance (92%). In terms of crowd-sourced factors (ie, those generally aggregated from a group of “nonexperts”) that were considered very important, word-of-mouth recommendations from family and friends were endorsed twice as often as rating sites (50% vs 25%, respectively; P < .001). Among the 7 choices in the survey, online physician ratings were the source least commonly endorsed as very important.

Awareness about common types of rating sites and usage rates by parents are presented in Table 3. Nearly three-quarters (74%) of all parents were aware of rating sites for physicians; this amount is lower than the proportions aware of rating sites for cars (92%) and restaurants (87%) but higher than the proportion aware of rating sites for hospitals (63%). Among all parents, 28% (95% confidence interval [CI]: 25–32) had sought online ratings in the previous year; this group represented 39% of the parent group who were aware of the sites.

Few respondents had posted ratings on sites they visited. The most common category for which ratings were posted was for restaurants (13%), with the 4 least common categories being physicians (6%), schools (4%), dentists (4%), and hospitals (3%). For all categories, posted ratings were generally positive or neutral. Cars (80%) and movies/books (79%) received the highest proportion of positive ratings from parents, whereas non–health care service providers and restaurants received the highest proportion of negative ratings (57% and 30%, respectively). Sixty percent of the parents who left ratings regarding physicians provided positive feedback, whereas 18% left negative feedback.

When all parents (including those who had never left ratings or comments) were asked to consider the implications of leaving a negative comment about a physician, 34% (95% CI: 31–37) had concerns about their identity being disclosed, and 23% (95% CI: 21–26) were concerned about the physician taking action against them. Thirty percent
Table 1: Characteristics of Study Participants (N = 1619)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Unweighted (n)</th>
<th>Weighted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>978</td>
<td>56</td>
</tr>
<tr>
<td>Male</td>
<td>741</td>
<td>44</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic white</td>
<td>1173</td>
<td>64</td>
</tr>
<tr>
<td>Non-Hispanic black</td>
<td>137</td>
<td>11</td>
</tr>
<tr>
<td>Hispanic</td>
<td>192</td>
<td>17</td>
</tr>
<tr>
<td>Non-Hispanic other</td>
<td>117</td>
<td>8</td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18–29</td>
<td>261</td>
<td>20</td>
</tr>
<tr>
<td>30–39</td>
<td>535</td>
<td>36</td>
</tr>
<tr>
<td>40–49</td>
<td>591</td>
<td>33</td>
</tr>
<tr>
<td>50–59</td>
<td>212</td>
<td>11</td>
</tr>
<tr>
<td>≥60</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤High school</td>
<td>91</td>
<td>10</td>
</tr>
<tr>
<td>High school</td>
<td>599</td>
<td>28</td>
</tr>
<tr>
<td>Some college</td>
<td>488</td>
<td>29</td>
</tr>
<tr>
<td>≥Bachelor’s degree</td>
<td>634</td>
<td>34</td>
</tr>
<tr>
<td>Annual household income, $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;30,000</td>
<td>284</td>
<td>20</td>
</tr>
<tr>
<td>30,000–60,000</td>
<td>408</td>
<td>26</td>
</tr>
<tr>
<td>60,001–100,000</td>
<td>460</td>
<td>29</td>
</tr>
<tr>
<td>≥100,000</td>
<td>467</td>
<td>25</td>
</tr>
<tr>
<td>US census region of residence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>265</td>
<td>16</td>
</tr>
<tr>
<td>Midwest</td>
<td>407</td>
<td>22</td>
</tr>
<tr>
<td>South</td>
<td>556</td>
<td>38</td>
</tr>
<tr>
<td>West</td>
<td>591</td>
<td>25</td>
</tr>
</tbody>
</table>

Proportions may not sum to 100% because of rounding.

(95% CI: 24–36) of parents who had gone online to seek physician ratings reported having selected a physician for their children based on positive ratings or reviews on a Web site, and another 30% (95% CI: 24–36) reported that they had avoided a physician due to negative ratings.

Table 2 presents findings for a subset of survey questions and response categories from Tables 2 and 3, stratified according to respondent characteristics.

Table 2: Importance of Various Factors for Parents Selecting a Primary Care Physician for Their Children: When Selecting a Primary Care Physician for Your Children, How Important Is Each of the Following?

<table>
<thead>
<tr>
<th>Factor</th>
<th>Very Important</th>
<th>Somewhat Important</th>
<th>Not Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accepts health insurance</td>
<td>1482 (92)</td>
<td>78 (5)</td>
<td>34 (3)</td>
</tr>
<tr>
<td>Convenient office location</td>
<td>1009 (65)</td>
<td>525 (33)</td>
<td>54 (3)</td>
</tr>
<tr>
<td>Physician’s years of experience</td>
<td>770 (52)</td>
<td>714 (42)</td>
<td>101 (6)</td>
</tr>
<tr>
<td>Word of mouth (from family/friends)</td>
<td>752 (50)</td>
<td>666 (39)</td>
<td>171 (12)</td>
</tr>
<tr>
<td>Part of a trusted group practice</td>
<td>722 (48)</td>
<td>647 (40)</td>
<td>217 (13)</td>
</tr>
<tr>
<td>Referral from another physician</td>
<td>567 (40)</td>
<td>757 (44)</td>
<td>280 (16)</td>
</tr>
<tr>
<td>Physician’s rating on Web sites</td>
<td>326 (25)</td>
<td>642 (37)</td>
<td>612 (37)</td>
</tr>
</tbody>
</table>

Data are presented as n (%) and 95% CI.

Compared with men, women had significantly higher odds of reporting online physician ratings to be very important when selecting a primary care physician for their children, were more likely to have found the ratings useful, and were more likely to have posted ratings themselves. In contrast, men were more likely to have left negative ratings than women. We also found a trend regarding age: compared with older respondents, parents in the youngest age group (18–29 years) were more likely to have considered the sites very important in selecting a physician and were also more likely to have posted ratings.

Responses to the 3 vignettes are presented in Table 5. Based on only a recommendation of a children’s physician by a neighbor (vignette 1), 22% (95% CI: 17–27) of parents were very likely to choose the recommended physician for their children. When combining a neighbor’s recommendation with the additional information of highly positive ratings on a Web site (vignette 2), the proportion of parents very likely to choose the recommended physician more than doubled to 46% (95% CI: 40–51; P < 0.001). In contrast, when combining a neighbor’s recommendation for a physician with a highly negative rating on a Web site (vignette 3), only 3% (95% CI: 1–7; P < 0.001) were very likely to choose the physician for their children.

In multivariate analyses adjusting for respondents’ age, gender, race/ethnicity, education, annual income, and census region, respondents exposed to vignette 2 (neighbor’s recommendation and positive online ratings) were significantly more likely to choose the neighbor’s physician (adjusted odds ratio: 3.0 [95% CI: 2.1–4.4]) than were respondents exposed to vignette 1 (neighbor’s recommendation alone). Conversely, respondents exposed to vignette 3 (neighbor’s recommendation and negative online ratings) were significantly
Category A: Are You Aware That Review Sites Exist?

Among Those Who Answered “Yes” to A: Have You Sought Online Ratings in the Past Year?

Yes More Than Once Once Very Useful Somewhat Useful Not Useful

Cars 1467 (92) 420 (28) 305 (19) 354 (52) 353 (48) 15 (2) 102 (7) 76 (80) 24 (24) 12 (12) 90–95

Restaurants 1400 (87) 543 (37) 211 (15) 342 (44) 387 (52) 24 (5) 221 (15) 115 168 (71) 53 (28) 72 (30) 85–89

Movies/books 1398 (87) 534 (38) 204 (16) 366 (44) 415 (53) 18 (2) 210 (12) 14 185 (79) 45 (24) 34 (15) 84–88

Electronics/appliances 1383 (86) 541 (38) 277 (20) 437 (53) 368 (45) 10 (2) 209 (12) 10–14 157 (70) 54 (28) 50 (25) 84–88

Other service providers (eg, mechanic, plumber, electrician) 1209 (76) 189 (17) 217 (17) 150 (53) 232 (57) 24 (5) 116 (8) 6–10 61–74 84–88

Physicians 1155 (74) 222 (19) 209 (19) 165 (39) 238 (55) 24 (6) 98 (6) 6–10 61–74 84–88

Schools 1081 (71) 211 (19) 202 (20) 181 (47) 208 (48) 24 (5) 116 (8) 6–10 61–74 84–88

Dentists 1098 (71) 166 (23) 172 (16) 94 (9) 145 (21) 31 (7) 64 (4) 6–10 61–74 84–88

Hospitals 969 (63) 74 (10) 128 (12) 83 (46) 105 (50) 13 (4) 47 (3) 29 (59) 11 (52) 10 (17) 60–66

Data are presented as n (%) and 95% CI.

a More than 1 category could be selected.

**TABLE 3** Parental Awareness and Usage Characteristics for Various Categories of Ratings Web Sites

**DISCUSSION**

Recent research regarding online physician ratings has focused on adults, whereas other studies have not made awareness about such ratings for themselves.27 Awareness among parents seeking a physician for their children, a 2010 study by the Pew Research Center in which 12% sought ratings.28 In a 2008 that 12% of adults had sought physician ratings in the previous year, and 6% had made a decision based on the information.2 These findings are similar to the rates found in the present study, suggesting that awareness and usage are increasing. A Kaiser Family Foundation study reported in 2008 that awareness of ratings for physicians was more than one-fourth (26%) and more than one-quarter (26%) had sought information on physician ratings for their children within the past year. These levels of awareness are notably higher than what has been reported elsewhere for adults regarding their own physicians.29

In a 2012 study from the United Kingdom, 16% were aware of physician rating sites, with 3% usage of physician ratings.30 Our 2013 study from Germany found a similar level of awareness.31 Younger, and more Internet-savvy, children are less likely to choose the neighbor child's dentist, physician (adjusted odds ratios, 0.09 [95% CI: 0.05–0.13]) than were respondents exposed to Twitter.1 These findings are consistent across the entire study sample, including those who had and had not already viewed online physician ratings.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%) OR (95% CI)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>121 (19) 0.5 (0.4–0.8)</td>
<td>494 (71) 0.8 (0.6–1.1)</td>
<td>162 (37) 0.9 (0.6–1.2)</td>
<td>55 (31) 0.5 (0.3–1.0)</td>
<td>34 (4) 0.4 (0.3–0.8)</td>
<td>15 (12) 1.5 (1.3–1.8)</td>
</tr>
<tr>
<td>Female</td>
<td>205 (30) 1 [Ref]</td>
<td>633 (76) 1 [Ref]</td>
<td>268 (40) 1 [Ref]</td>
<td>108 (45) 1 [Ref]</td>
<td>64 (9) 1 [Ref]</td>
<td>15 (12) 1 [Ref]</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic white</td>
<td>175 (18) 1 [Ref]</td>
<td>821 (72) 1 [Ref]</td>
<td>297 (36) 1 [Ref]</td>
<td>103 (36) 1 [Ref]</td>
<td>67 (8) 1 [Ref]</td>
<td>19 (30) 1 [Ref]</td>
</tr>
<tr>
<td>Non-Hispanic black</td>
<td>54 (47) 4.1 (2.4–8.8)</td>
<td>99 (81) 1.7 (1.0–2.8)</td>
<td>40 (40) 1.2 (0.7–2.1)</td>
<td>20 (59) 2.5 (1.1–5.8)</td>
<td>5 (5) 0.9 (0.5–1.8)</td>
<td>0 (0) —</td>
</tr>
<tr>
<td>Hispanic</td>
<td>67 (39) 2.9 (1.5–4.7)</td>
<td>130 (74) 1.1 (0.7–1.7)</td>
<td>60 (43) 1.3 (0.8–2.2)</td>
<td>28 (42) 1.6 (0.6–2.9)</td>
<td>16 (9) 1.6 (0.7–3.9)</td>
<td>2 (0) 0.1 (0.02–0.8)</td>
</tr>
<tr>
<td>Non-Hispanic other</td>
<td>30 (27) 1.7 (1.0–3.1)</td>
<td>84 (78) 1.4 (0.8–2.4)</td>
<td>34 (47) 1.6 (0.8–2.9)</td>
<td>12 (28) 0.7 (0.3–1.9)</td>
<td>10 (8) 1.4 (0.6–3.5)</td>
<td>0 (0) —</td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;18–29</td>
<td>94 (44) 1 [Ref]</td>
<td>204 (81) 1 [Ref]</td>
<td>96 (47) 1 [Ref]</td>
<td>45 (52) 1 [Ref]</td>
<td>54 (13) 1 [Ref]</td>
<td>6 (14) 1 [Ref]</td>
</tr>
<tr>
<td>30–39</td>
<td>111 (25) 0.4 (0.3–0.6)</td>
<td>376 (72) 0.6 (0.4–0.9)</td>
<td>156 (58) 0.7 (0.4–1.1)</td>
<td>51 (37) 0.6 (0.3–1.1)</td>
<td>27 (6) 0.4 (0.2–0.9)</td>
<td>7 (22) 1.7 (0.5–9.1)</td>
</tr>
<tr>
<td>40–49</td>
<td>91 (19) 0.3 (0.2–0.5)</td>
<td>391 (71) 0.6 (0.4–0.9)</td>
<td>146 (38) 0.7 (0.4–1.1)</td>
<td>47 (32) 0.4 (0.2–0.9)</td>
<td>26 (4) 0.3 (0.2–0.9)</td>
<td>7 (24) 1.9 (0.4–8.6)</td>
</tr>
<tr>
<td>50–59</td>
<td>26 (14) 0.2 (0.1–0.4)</td>
<td>148 (74) 0.7 (0.4–1.2)</td>
<td>47 (29) 0.5 (0.3–0.9)</td>
<td>18 (35) 0.5 (0.2–1.3)</td>
<td>10 (5) 0.2 (0.1–0.5)</td>
<td>1 (7) 0.4 (0.04–4.9)</td>
</tr>
<tr>
<td>≥60</td>
<td>4 (16) 0.3 (0.1–1.0)</td>
<td>14 (66) 0.5 (0.3–1.2)</td>
<td>6 (23) 0.3 (0.1–1.5)</td>
<td>2 (59) 1.3 (0.2–10.8)</td>
<td>1 (2) 0.1 (0.02–1.3)</td>
<td>0 (0) —</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;High school</td>
<td>33 (39) 1 [Ref]</td>
<td>57 (73) 1 [Ref]</td>
<td>18 (38) 1 [Ref]</td>
<td>15 (77) 1 [Ref]</td>
<td>5 (10) 1 [Ref]</td>
<td>0 (0) —</td>
</tr>
<tr>
<td>High school</td>
<td>91 (26) 0.6 (0.3–1.1)</td>
<td>272 (73) 1.0 (0.5–1.8)</td>
<td>98 (32) 0.8 (0.4–1.6)</td>
<td>42 (38) 0.2 (0.04–0.9)</td>
<td>29 (6) 0.5 (0.2–1.8)</td>
<td>8 (40) 1 [Ref]</td>
</tr>
<tr>
<td>Some college</td>
<td>102 (24) 0.5 (0.3–1.1)</td>
<td>341 (71) 0.9 (0.5–1.6)</td>
<td>131 (39) 1.0 (0.5–2.2)</td>
<td>47 (33) 0.2 (0.03–0.9)</td>
<td>30 (7) 0.6 (0.2–2.0)</td>
<td>7 (18) 0.3 (0.1–1.7)</td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>100 (22) 0.4 (0.2–0.8)</td>
<td>463 (77) 1.2 (0.7–2.2)</td>
<td>184 (43) 1.2 (0.6–2.5)</td>
<td>59 (34) 0.2 (0.03–0.7)</td>
<td>34 (6) 0.5 (0.2–1.8)</td>
<td>6 (12) 0.2 (0.1–0.9)</td>
</tr>
<tr>
<td>Annual household income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;$30,000</td>
<td>86 (38) 1 [Ref]</td>
<td>195 (73) 1 [Ref]</td>
<td>75 (35) 1 [Ref]</td>
<td>36 (55) 1 [Ref]</td>
<td>24 (7) 1 [Ref]</td>
<td>6 (10) 1 [Ref]</td>
</tr>
<tr>
<td>30,000–60,000</td>
<td>92 (28) 0.6 (0.4–1.0)</td>
<td>278 (74) 1.1 (0.7–1.7)</td>
<td>103 (33) 0.9 (0.5–1.6)</td>
<td>33 (38) 0.5 (0.2–1.1)</td>
<td>27 (6) 0.8 (0.3–1.8)</td>
<td>4 (18) 2.1 (0.4–1.17)</td>
</tr>
<tr>
<td>60,001–100,000</td>
<td>83 (21) 0.4 (0.3–0.7)</td>
<td>320 (75) 1.0 (0.7–1.6)</td>
<td>108 (40) 1.2 (0.7–2.0)</td>
<td>36 (34) 0.4 (0.2–1.0)</td>
<td>20 (7) 0.9 (0.4–2.1)</td>
<td>4 (17) 1.9 (0.3–1.19)</td>
</tr>
<tr>
<td>≥100,000</td>
<td>65 (25) 0.3 (0.2–0.6)</td>
<td>340 (74) 1.1 (0.7–1.7)</td>
<td>145 (46) 1.8 (1.0–2.6)</td>
<td>52 (38) 0.5 (0.2–1.0)</td>
<td>27 (7) 0.9 (0.4–2.2)</td>
<td>7 (28) 3.7 (0.7–18.9)</td>
</tr>
</tbody>
</table>

*Statistically significant P values.*
TABLE 5 Parent Responses to 1 of 3 Hypothetical Vignettes Designed to Assess the Influence of Online Ratings on Decisions Related to Selecting a Child’s Primary Care Physician

<table>
<thead>
<tr>
<th>Vignette</th>
<th>Very Likely</th>
<th>Somewhat Likely</th>
<th>Somewhat Unlikely</th>
<th>Very Unlikely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vignette 1 (baseline vignette)</td>
<td>107 (22); 17–27</td>
<td>353 (65); 59–70</td>
<td>48 (11); 8–16</td>
<td>13 (2); 1–4</td>
</tr>
<tr>
<td>Vignette 2 Baseline Vignette and</td>
<td>271 (48); 40–51</td>
<td>222 (42); 36–48</td>
<td>40 (8); 6–13</td>
<td>18 (4); 2–8</td>
</tr>
<tr>
<td>Vignette 3 Baseline Vignette and</td>
<td>7 (3); 1–7</td>
<td>102 (19); 15–24</td>
<td>193 (36); 30–41</td>
<td>234 (43); 38–49</td>
</tr>
</tbody>
</table>

Data are presented as n (%) and 95% CI.

* The age of the participant’s youngest child was substituted for (x-month/year-old) in the vignette (eg, “2-year-old”). The ages had been entered by participant parents earlier in the survey.

that 32% were aware of such sites, and 25% had used these sites.\(^50\)

It has been said that one’s “online reputation” is now just as important as one’s reputation among the general community,\(^51\) and the results from our 3 vignettes seem to support that perspective. Regardless of whether respondents had viewed physician ratings in the past, and independent of the respondents’ individual characteristics (eg, age, gender, educational level), both positive and negative online ratings strongly influenced the likelihood of selecting a child’s physician recommended by a neighbor. Furthermore, about one-third of parents who had previously sought online ratings reported either selecting or avoiding a physician due to the ratings.

Other results from our survey indicate the multifactorial context in which parents take into account multiple factors when selecting a physician (Table 2). Although ratings may influence these decisions, additional factors such as office location and insurance coverage also matter, which is consistent with what has been reported in the literature.\(^52\) A national survey of parent decision-making in 2008 noted that about one-half of parents reported that high ratings from patients and families were very important in selecting a child’s physician but were lower in importance than other factors such as clinical quality and malpractice issues.\(^53\)

Although physicians may believe that negative ratings outnumber positive ones on physician-rating Web sites,\(^54\) numerous studies have found that not to be the case.\(^20,35–44\) This finding is consistent with what is known about consumer-sourced rating systems in general. In our study, parents reported posting positive ratings for physicians more often than negative ratings, by a factor of 3 to 1. We did not ask the parents in our survey what type of relationship they had with the physicians they rated, but a recent study reported that longer term (>1 year) relationships with an adult primary care physician resulted in mostly positive online reviews.\(^45\)

Physician concerns about negative content on rating Web sites\(^34,44,46–49\) has led to multiple strategies for mitigating and preventing damaging ratings.\(^50–52\)

For example, some physicians have attempted to prevent patients from leaving comments by having them sign a “contract of mutual privacy” that forbids them from commenting on rating sites without permission.\(^53,54\) Other physicians have even sued patients for posting negative comments on ratings sites.\(^55\) Our analysis indicates that parents have corresponding concerns about posting negative comments, with 23% of parents worried that the physician might take action against them.

Despite the preponderance of positive reviews, the small number of individuals posting reviews overall likely leads to biased representation.\(^58\) This concern is prevalent for traditional (ie, not online) satisfaction surveys as well.\(^56\)

In fact, the bias may be most prominent among physicians who have the least number of satisfied patients.\(^57\) We found that among our sample, only a small
all responses were self-reported, and actual use of online physician ratings was not observed, nor do we know what sites the respondents had visited. Similarly, responses to the vignettes were based on hypothetical scenarios, and we did not assess whether parents had experienced such situations in the past. Furthermore, although we attempted to contextualize parents’ decision-making within a spectrum of potential influences, there may be additional factors affecting decisions about choosing a physician that were not incorporated in the survey. Importantly, this survey was conducted at a single point in time in a rapidly changing landscape of online access and usage. The participation rate is consistent with that of other published NPCH-based studies, but in survey research, there is always the potential for unmeasured sources of participation bias that may have affected our findings. We attempted to mitigate such bias by providing an invitation that did not mention the subject matter. The online nature of our survey may have hindered responses from less Internet-facile respondents; however, the survey vendor attempted to lessen this potential bias by providing Internet-connected computers to volunteers who wished to participate but did not have the necessary hardware and Internet access at the time they were invited to become members of the panel.

CONCLUSIONS

Although “choosing a doctor will always be a more complex decision than choosing a place to have dinner,” review sites that present physician reviews in much the same way as restaurant reviews may become increasingly used as a source of information for families seeking information on health care providers. Review sites have the potential to change the patient-physician relationship, by transforming it into more of a service consumer-provider relationship. The ongoing debate about online physician ratings will likely be affected by how both the public and physicians perceive the value of these sites and their willingness to accept them as another tool for making informed health care-related decisions. Our study underscores the importance of examining awareness about, as well as use of, online physician ratings when parents are making physician choices for their children. As a subgroup among all adults, parents of children aged <18 years represent a generally more Internet-engaged demographic group whose familiarity with Internet-based sources of information may facilitate their more rapid adoption of ratings Web sites as strong influences in their decision-making for multiple consumer goods and services. For that reason, online ratings Web sites for children’s physicians may serve as the leading edge for public incorporation of online physician ratings in general.

REFERENCES


44. Mackay B. RateMDs.com nets ire of Canadian physicians. CMAJ. 2007;176(6):754.


54. Woodward C. “Anti-defamation” group seeks to tame the rambunctious world of online doctor reviews. CMAJ. 2009;180(10):1010.


(Continued from first page)

**FINANCIAL DISCLOSURE:** The authors have indicated they have no financial relationships relevant to this article to disclose.

**FUNDING:** Support for this study was provided by the C.S. Mott Children’s Hospital National Poll on Children’s Health (http://www.med.umich.edu/mott/npch), which was sponsored by the Department of Pediatrics and Communicable Diseases at the University of Michigan and the University of Michigan Health System.

**POTENTIAL CONFLICT OF INTEREST:** The authors have indicated they have no potential conflicts of interest to disclose.

**COMPANION PAPER:** A companion to this article can be found on page e1169, online at www.pediatrics.org/cgi/doi/10.1542/peds2014-2351.
Parental Awareness and Use of Online Physician Rating Sites
David A. Hanauer, Kai Zheng, Dianne C. Singer, Achamyeleh Gebremariam and Matthew M. Davis
Pediatrics 2014;134;e966; originally published online September 22, 2014; DOI: 10.1542/peds.2014-0681

Updated Information & Services
including high resolution figures, can be found at:
/content/134/4/e966.full.html

References
This article cites 49 articles, 12 of which can be accessed free at:
/content/134/4/e966.full.html#ref-list-1

Citations
This article has been cited by 1 HighWire-hosted articles:
/content/134/4/e966.full.html#related-urls

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Administration/Practice Management
/cgi/collection/administration:practice_management_sub
Media
/cgi/collection/media_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2014 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.
Parental Awareness and Use of Online Physician Rating Sites
David A. Hanauer, Kai Zheng, Dianne C. Singer, Achamyeleh Gebremariam and Matthew M. Davis

*Pediatrics* 2014;134;e966; originally published online September 22, 2014;
DOI: 10.1542/peds.2014-0681

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/134/4/e966.full.html