Validity of Different Pediatric Early Warning Scores in the Emergency Department

WHAT’S KNOWN ON THIS SUBJECT: Pediatric early warning scores (PEWS) for hospital inpatients have been developed to identify patients at risk for deterioration. Beyond triage, similar systems that identify ill patients and predict requirements for a higher level of care are needed in the emergency department.

WHAT THIS STUDY ADDS: The validity of the different PEWS in pediatric emergency care patients has never been evaluated. This study showed that PEWS are capable of detecting children in need of ICU admission.

OBJECTIVE: Pediatric early warning scores (PEWS) are being advocated for use in the emergency department (ED). The goal of this study was to compare the validity of different PEWS in a pediatric ED.

METHODS: Ten different PEWS were evaluated in a large prospective cohort. We included children aged <16 years who had presented to the ED of a university hospital in The Netherlands (2009–2012). The validity of the PEWS for predicting ICU admission or hospitalization was expressed by the area under the receiver operating characteristic (ROC) curves.

RESULTS: These PEWS were validated in 17,943 children. Two percent of these children were admitted to the ICU, and 16% were hospitalized. The areas under the ROC curves for predicting ICU admission, ranging from 0.60 (95% confidence interval [CI]: 0.57–0.62) to 0.82 (95% CI: 0.79–0.85), were moderate to good. The area under the ROC curves for predicting hospitalization was poor to moderate (range: 0.56 [95% CI: 0.55–0.58] to 0.68 [95% CI: 0.66–0.69]). The sensitivity and specificity derived from the ROC curves ranged widely for both ICU admission (sensitivity: 61.3%–94.4%; specificity: 25.2%–86.7%) and hospital admission (sensitivity: 36.4%–85.7%; specificity: 27.1%–90.5%). None of the PEWS had a high sensitivity as well as a high specificity.

CONCLUSIONS: PEWS can be used to detect children presenting to the ED who are in need of an ICU admission. Scoring systems, wherein the parameters are summed to a numeric value, were better able to identify patients at risk than triggering systems, which need 1 positive parameter. *Pediatrics* 2013;132:e841–e850

AUTHORS: Nienke Seiger, MD,a Ian Maconochie, FRCPCH, FCEM, FRCP, PhD,a Rianne Oostenbrink, MD, PhD,a and Henriëtte A. Moll, MD, PhD*a

*aDepartment of Pediatrics, Erasmus MC–Sophia Children’s Hospital, Rotterdam, Netherlands; andbDepartment of Pediatric Accident and Emergency, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom

KEY WORDS
child, emergency medical services, triage (early warning score), validity, vital signs

ABBREVIATIONS
ATS—Australasian Triage Scale
CI—confidence interval
ED—emergency department
ESI—Emergency Severity Index
IQR—interquartile range
MTS—Manchester Triage System
PedCTAS—pediatric Canadian Triage and Acuity Scale
PEWS—pediatric early warning scores
ROC—receiver operating characteristic

Dr Seiger conceptualized and designed the study, carried out the initial analyses, and drafted the initial manuscript; Dr Maconochie conceptualized and designed the study, and reviewed and revised the manuscript; Dr Oostenbrink designed the data collection instruments, supervised data collection, and reviewed and revised the manuscript; Dr Moll conceptualized and designed the study, drafted the article, and analyzed the data, all authors approved the final manuscript as submitted. Dr Moll is guarantor.

www.pediatrics.org/cgi/doi/10.1542/peds.2012-3584
doi:10.1542/peds.2012-3584

Accepted for publication Jul 11, 2013

Address correspondence to Henriëtte A. Moll, MD, PhD, Department of Pediatrics, Room Sp 1540, Erasmus MC–Sophia Children’s Hospital, University Medical Centre Rotterdam, PO Box 2060, 3000 CB Rotterdam, Netherlands. E-mail: h.a.moll@erasmusmc.nl

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).
Copyright © 2013 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

FUNDING: Supported by an unrestricted grant from Europe Container Terminals B.V.

POTENTIAL CONFLICT OF INTEREST: The authors have indicated they have no potential conflicts of interest to disclose.
Pediatric early warning scores (PEWS) are physiology-based scoring systems developed to identify patients admitted to inpatient pediatric wards at risk for clinical deterioration. A recent publication showed that early warning scores are needed to quickly identify critically ill patients in the emergency departments (EDs) so that treatment can be started without delay. Moreover, the use of the same system in the ED and inpatient wards allows continuity for patient assessment.

According to an adult study performed in the United Kingdom, early warning scores are used in the majority of EDs, although the evidence for this claim is lacking. To date, there are few data on the use of PEWS in children presenting to the ED. Bradman and Maconochie conducted a pilot study to validate a designed for initial assessment at the ED and showed that the system was able to identify children requiring ICU admission.

The goal of the current study was to compare the performance of different PEWS to predict ICU admission or hospitalization in a large population of children visiting the pediatric ED.

METHODS

Study Design

Different versions of PEWS were evaluated in a large prospective cohort of children presenting to the ED. The different PEWS were based on patients’ age and vital sign values (heart rate, respiratory rate, oxygen saturation, blood pressure, temperature, and level of consciousness) prospectively collected during the triage assessment.

The current study used data collected for an ongoing study on the validity of the Manchester Triage System (MTS) in pediatric patients. The medical ethics committee of Erasmus MC approved the study, and the requirement for informed consent was waived.

Setting and Selection of Participants

Data collection included all children aged <16 years who presented to the ED of the Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands, between August 2009 and June 2012. The Erasmus MC—Sophia Children’s Hospital is a large inner-city university hospital with a pediatric ED that is open 24 hours a day. The ED receives ~8000 children annually from a catchment area with a multisocioeconomic and multiethnic population of 2 million inhabitants.

Pediatric Early Warning Scores

A PubMed search was performed in June 2012 using the terms “pediatric early warning,” “ paediatric early warning,” “track and trigger,” “trigger criteria,” “calling criteria,” “medical emergency team,” “pediatric alert criteria,” or “ paediatric alert criteria.” Studies were limited to children aged 0 to 18 years and a publication date within the past 10 years. Subsequently, the titles, abstract, and full text articles were screened, and the reference lists of systematic reviews and studies on the use of PEWS in the ED were scanned to complete the search. The PEWS were included if the scores were newly developed for children presenting to the ED or admitted to an inpatient pediatric ward or if the original scores were adjusted.

The PubMed search retrieved a total of 75 articles. After exclusion of studies not addressing PEWS (n = 45), original research on PEWS (n = 8), or children (n = 6), 16 studies remained. Eight studies described newly developed or derived PEWS and the remaining 8 studies validated these PEWS. Four studies were included after screening the reference lists, resulting in a total of 12 PEWS, of which 11 were developed for inpatient use and 1 for use in the ED.

The PEWS can be differentiated into scoring systems and triggering systems. A scoring system contains different parameters (eg, heart rates or respiratory rates). If these parameters show an increased deviation from normal values, the given scores are greater. The scores for all the different parameters are cumulated to 1 numeric value, which, depending on the cutoff level, determines a patient’s risk for clinical deterioration. In a triggering system, the patient is considered at risk if 1 of the parameters is positive.

Six PEWS were considered as scoring systems and 6 as triggering systems. Most PEWS were developed for inpatient patients and therefore not all parameters were available at triage assessment. Parameters that contain diagnostics, therapeutic interventions, or suspected diagnoses were removed from the scoring and triggering systems. Only therapeutic interventions such as oxygen therapy and bolus fluids remained in the model because these parameters are surrogate markers of low saturation and severe dehydration, which are features scored by triage nurses. The PEWS of Hunt et al and Sharek et al are not useful for triage assessment in the ED because continuous monitoring of vital signs is needed to assess acute change in vital signs. Therefore, 10 PEWS remained for analysis.

Details of parameters used in the remaining PEWS are shown in Table 1, and the contributions of individual parameters to the scoring systems are shown in Appendix 1.

Data Collection

ED nurses specialized in both pediatric and emergency care collected standardized data on the different parameters of the PEWS during triage assessment and recorded this information on structured electronic or paper (2006—2009) ED forms. Heart
<table>
<thead>
<tr>
<th>PEWS Origin</th>
<th>Type</th>
<th>Age Range</th>
<th>Heart Rate (beats/min)</th>
<th>Respiratory Rate (breaths/min)</th>
<th>Systolic Blood Pressure (mm Hg)</th>
<th>Oxygen Saturation</th>
<th>Temperature (°C)</th>
<th>Level of Consciousness</th>
<th>Other Parameter</th>
<th>Excluded Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monaghan</td>
<td>Original Scoring (0–9)</td>
<td><1 y</td>
<td>120–190</td>
<td>35–50</td>
<td>NA</td>
<td>NA</td>
<td>Sleeping; irritable; lethargic; confused; reduced response to pain</td>
<td>Capillary refill; oxygen therapy; work of breathing</td>
<td>1/4 hourly nebulizers; persistent vomiting after surgery</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1–2 y</td>
<td>80–130</td>
<td>30–45</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3–4 y</td>
<td>70–130</td>
<td>26–41</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5–11 y</td>
<td>70–130</td>
<td>22–37</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12–16 y</td>
<td>60–110</td>
<td>11–26</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akre et al</td>
<td>Derived Scoring (0–9)</td>
<td><1 m</td>
<td>100–200</td>
<td>35–70</td>
<td>NA</td>
<td>NA</td>
<td>Sleeping; irritable; lethargic; confused; reduced response to pain</td>
<td>Capillary refill; cyanotic; oxygen therapy; work of breathing</td>
<td>1/4 hourly nebulizers; persistent vomiting after surgery</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1–12 m</td>
<td>100–200</td>
<td>30–50</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 m–3 y</td>
<td>70–130</td>
<td>20–40</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4–6 y</td>
<td>70–130</td>
<td>16–33</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7–12 y</td>
<td>70–130</td>
<td>14–31</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13–16 y</td>
<td>55–110</td>
<td>11–28</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skaletzky et al</td>
<td>Derived Scoring (0–9)</td>
<td><3 m</td>
<td>85–225</td>
<td>30–70</td>
<td>NA</td>
<td>NA</td>
<td>Sleeping; irritable; lethargic; confused; reduced response to pain</td>
<td>Capillary refill; oxygen therapy; work of breathing</td>
<td>1/4 hourly nebulizers; persistent vomiting after surgery</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 m–1 y</td>
<td>100–210</td>
<td>30–70</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1–2 y</td>
<td>100–210</td>
<td>24–30</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2–3 y</td>
<td>60–160</td>
<td>24–30</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4–5 y</td>
<td>60–160</td>
<td>22–44</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6–10 y</td>
<td>60–160</td>
<td>18–40</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10–12 y</td>
<td>60–120</td>
<td>18–40</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13–16 y</td>
<td>60–120</td>
<td>12–26</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duncan et al</td>
<td>Original Scoring (0–23)</td>
<td><3 m</td>
<td>110–150</td>
<td>30–80</td>
<td>60–80</td>
<td>>95%</td>
<td>36–38.5</td>
<td>Glasgow Coma scale score ≤11</td>
<td>Pulses; capillary refill; oxygen therapy; bolus fluid</td>
<td>None (dynamic model was used)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3–12 m</td>
<td>100–150</td>
<td>25–50</td>
<td>80–100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1–4 y</td>
<td>90–120</td>
<td>20–40</td>
<td>90–110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4–12 y</td>
<td>70–110</td>
<td>20–30</td>
<td>90–120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>12 y</td>
<td>60–100</td>
<td>12–16</td>
<td>100–130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parshuram et al</td>
<td>Derived Scoring (0–26)</td>
<td><3 m</td>
<td>110–150</td>
<td>30–80</td>
<td>60–80</td>
<td>>94%</td>
<td>NA</td>
<td>NA</td>
<td>Capillary refill; respiratory effort; oxygen therapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3–12 m</td>
<td>100–150</td>
<td>25–50</td>
<td>80–100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1–4 y</td>
<td>90–120</td>
<td>20–40</td>
<td>90–110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4–12 y</td>
<td>70–110</td>
<td>20–30</td>
<td>90–120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>12 y</td>
<td>60–100</td>
<td>12–16</td>
<td>100–130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egdell et al</td>
<td>Original Scoring (0–21)</td>
<td><1 y</td>
<td>110–160</td>
<td>30–40</td>
<td>NA</td>
<td></td>
<td>≥93%</td>
<td>36–38</td>
<td>Responds to voice; responds to pain; unresponsive</td>
<td>Work of breathing; capillary refill</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1–2 y</td>
<td>100–150</td>
<td>25–35</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2–5 y</td>
<td>95–140</td>
<td>25–30</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5–12 y</td>
<td>80–120</td>
<td>20–25</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>12 y</td>
<td>60–100</td>
<td>15–20</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rates, oxygen saturation, and blood pressure were measured by using electronic devices. Respiratory rates were measured by counting respiratory movements for 30 seconds. The measurement of vital signs was left to the discretion of the nurse. The database was checked for outliers (values 3 times the interquartile range above the 75th percentile and 3 times the interquartile range below the 25th percentile). Patient characteristics and data on follow-up were extracted from the electronic hospital system and merged in SPSS version 20.0 (IBM SPSS Statistics, IBM Corporation, Armonk, NY) for analysis.

Data Analysis

To impute missing vital signs values, we used a multiple imputation model including age, gender, vital signs values, hospitalization, ICU admission, MTS category, and presenting problem. This method means that missing data are replaced by a value that is drawn from an estimate of the distribution of the variable to create a complete database. This process was executed 10 times to generate 10 complete databases. Statistical analyses on each database were performed and pooled for a final result.

A numeric score was calculated for the different scoring systems and a binary score for the triggering systems. The validity of the PEWS was expressed by the areas under the receiver operating characteristic (ROC) curves, sensitivity, specificity, positive likelihood ratios, and negative likelihood ratios. Sensitivity, specificity, positive likelihood ratios, negative likelihood ratios, and the 95% confidence intervals (CIs) were calculated with the VassarStats.

Table 1

<table>
<thead>
<tr>
<th>PEWS</th>
<th>Origin</th>
<th>Type</th>
<th>Age Range</th>
<th>Heart Rate (beats/min)</th>
<th>Respiratory Rate (breaths/min)</th>
<th>Systolic Blood Pressure (mm Hg)</th>
<th>Oxygen Saturation</th>
<th>Temperature (°C)</th>
<th>Level of Consciousness</th>
<th>Other Parameter</th>
<th>Excluded Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tibballs et al</td>
<td>Original</td>
<td>Triggering</td>
<td><3 m</td>
<td>100–180</td>
<td>>60</td>
<td><50</td>
<td>NA</td>
<td>Acute change in neurologic status</td>
<td>Airway threat, severe respiratory distress, cyanosis, cardiac or respiratory arrest; worried about clinical state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edwards et al</td>
<td>Derived</td>
<td>Triggering</td>
<td><1 y</td>
<td>90–160</td>
<td>20–50</td>
<td>70–90</td>
<td>NA</td>
<td>Responds to voice; responds to pain; unresponsive</td>
<td>Airway threat (eg, stridor), work of breathing; worried about clinical state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haines et al</td>
<td>Derived</td>
<td>Triggering</td>
<td><6 m</td>
<td>≥150</td>
<td>≥70</td>
<td>NA</td>
<td>NA</td>
<td>Glasgow Coma scale score ≤11; responds only to pain; convulsion</td>
<td>Airway threat signs of shock (eg, prolonged capillary refill [3 s]); hyperkalemia; suspected meningococcus; suspected ketoacidosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brilli et al</td>
<td>Original</td>
<td>Triggering</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>≥90%</td>
<td>Agitation or decreased level of consciousness</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NA, not available.
Twelve different PEWS were described in the literature, of which 10 were potentially suited for use in the ED. The discriminative ability of the PEWS (area under the ROC curve) were moderate to good for ICU admission (range: 0.56—0.82) and poor to moderate for admission to the hospital (range: 0.56—0.68). Moreover, scoring systems with parameters leading to a numeric value were better able to identify patients at risk than triggering systems, which need 1 positive parameter. The c-statistics of the different scoring systems, however, were not statistically different. The choice of best PEWS in the ED should depend on other factors such as ease of use.

The scoring systems of Egdell et al4 and Duncan et al10 contain more parameters than the scores of Monaghan,7 Akre et al,8 Skaletzky et al,9 and Parshuram et al11 and thus are more time-consuming at initial assessment. Moreover, the PEWS of Duncan et al and Parshuram et al included blood pressure, which is difficult to obtain in a standardized manner in a busy ED. For this reason, the applicability of scoring systems should be evaluated for the individual setting before implementation.

However, scoring systems with more parameters provide a wider range of sum scores and can therefore differentiate patients into >2 risk groups. This categorization can be important when PEWS are not only used to identify patients in need of ICU admission but also patients in need of admission to

TABLE 2 Patient Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Study Population (N = 17 943)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female gender, n (%)</td>
<td>7399 (41)</td>
</tr>
<tr>
<td>Median age (IQR), y</td>
<td>4.2 (1.4–9.5)</td>
</tr>
<tr>
<td>Presenting problem, n (%)</td>
<td></td>
</tr>
<tr>
<td>Trauma</td>
<td>4438 (25)</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>2399 (13)</td>
</tr>
<tr>
<td>FWS</td>
<td>1624 (9)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>1566 (9)</td>
</tr>
<tr>
<td>Wounds</td>
<td>1186 (7)</td>
</tr>
<tr>
<td>Neurologic</td>
<td>810 (5)</td>
</tr>
<tr>
<td>Urinary tract problems</td>
<td>438 (2)</td>
</tr>
<tr>
<td>Local infection/abscess</td>
<td>344 (2)</td>
</tr>
<tr>
<td>Rash</td>
<td>306 (2)</td>
</tr>
<tr>
<td>Ear, nose, throat</td>
<td>260 (1)</td>
</tr>
<tr>
<td>Other problems</td>
<td>3933 (22)</td>
</tr>
<tr>
<td>Missing</td>
<td>620 (4)</td>
</tr>
<tr>
<td>MTS triage category, n (%)</td>
<td></td>
</tr>
<tr>
<td>Immediate</td>
<td>358 (2)</td>
</tr>
<tr>
<td>Very urgent</td>
<td>2337 (15)</td>
</tr>
<tr>
<td>Urgent</td>
<td>7887 (44)</td>
</tr>
<tr>
<td>Standard</td>
<td>6339 (35)</td>
</tr>
<tr>
<td>Nonurgent</td>
<td>504 (3)</td>
</tr>
<tr>
<td>Missing</td>
<td>620 (4)</td>
</tr>
<tr>
<td>Follow-up, n (%)</td>
<td></td>
</tr>
<tr>
<td>No follow-up</td>
<td>6700 (37)</td>
</tr>
<tr>
<td>Outpatient clinic/GP</td>
<td>5855 (33)</td>
</tr>
<tr>
<td>Hospital admission</td>
<td>2828 (16)</td>
</tr>
<tr>
<td>ICU admission/mortality at ED</td>
<td>373 (2)</td>
</tr>
<tr>
<td>Other follow-up</td>
<td>2207 (12)</td>
</tr>
</tbody>
</table>

GP, general practitioner; IQR, interquartile range.

When hospitalization was used, the sensitivity ranged from 36.4% to 85.7% and the specificity ranged from 27.1% to 90.5%. None of the PEWS showed both a high sensitivity and a high specificity. Sensitivity, specificity, positive likelihood ratios, and negative likelihood ratios of the individual PEWS are shown in Table 3.

DISCUSSION

The ROC curves of the PEWS are shown in Fig 1. The discriminative ability to predict ICU admission and admission to the hospital was higher when scoring systems were used than when triggering systems were used (Table 3). Moreover, PEWS were better suited to predict ICU admission than admission to the hospital, because the areas under the ROC curves decreased significantly when admission to the hospital was used as the outcome measure.

For all PEWS, the optimal cutoff level to calculate sensitivity and specificity for both ICU admission and admission to hospital was set at 1, except for the PEWS of Duncan et al10 and Parshuram et al,11 for which the cutoff levels were set at 3 for ICU admission and 2 for admission to the hospital (Table 3). The sensitivity and specificity at different cutoff levels of the scoring systems are shown in Appendix 2.

The sensitivity and specificity of the PEWS at the optimal cutoff levels varied widely. When ICU admission was used, the sensitivity of the different PEWS ranged from 61.3% to 94.4% and the specificity ranged from 25.2% to 86.7%. These findings resulted in a positive likelihood ratio between 1.3 and 4.8 and a negative likelihood ratio between 0.22 and 0.45.
a pediatric ward. The PEWS of Duncan et al10 and its bedside version from Parshuram et al11 are the only scores with different optimal cutoff levels for hospitalization and ICU admission, and they are therefore best suited to allocate patients to >2 risk groups. Thresholds for abnormal vital signs influence the validity of the PEWS, because PEWS that only differ according to vital sign thresholds showed different c-statistics. This finding suggests that the PEWS could be optimized by choosing the optimal cutoff levels for vital sign values. At present, most

\textbf{FIGURE 1}

ROC curves of scoring systems and triggering systems for (left) ICU admission and (right) hospitalization.
PEWS use cutoff levels based on the Advanced Pediatric Life Support program. However, recent publications suggest that reference ranges for vital signs should be updated with new thresholds.

At present, conventional triage systems such as the MTS, the Emergency Severity Index (ESI), the pediatric Canadian Triage and Acuity Scale (PedCTAS), and the Australasian triage Scale (ATS) are used in the ED to allocate the patient's acuity. In the MTS, PedCTAS, and ATS, trained triage nurses had to recognize patient's signs and symptoms to allocate acuity. In the ESI, the urgency categories are based on the need of life-saving interventions and resource use. In all triage systems, vital signs are included to allocate urgency. However, the use of these vital signs differed from the use in PEWS scoring systems, because they are dichotomized into normal and abnormal for the ATS, PedCTAS, and ESI, and in the MTS, they were included as discriminators such as "shock," "abnormal pulse," and "increased work of breathing"; thus, values for abnormality in children were not provided. In South Africa, an early warning score was included to allocate patients to the lowest urgency levels. This triage strategy is inexpensive and can be executed by an inexperienced staff.

Although PEWS can identify patients at risk in the ED for ICU admission and, to a lesser extent, identify patients at risk for hospitalization, we do not advise using warning scores as triage tools to prioritize patients. At present, there is no evidence that PEWS are better than conventional triage systems. To prove that PEWS as triage tools are better than conventional triage systems or that PEWS have added value to conventional triage systems, a direct comparison study should be conducted in which patient outcomes and costs are included. Currently, PEWS in the ED should be an adjunct of conventional triage. They can be used as a tool to indicate ICU admission or as a monitoring tool to identify patient deterioration, due to their ability to continue a patient's assessment when admitted to the hospital.

The main limitation of the current study is that the different PEWS were not implemented in the ED itself and therefore were not evaluated in practice. Conversely, because the PEWS have not been implemented, clinicians did not know the PEWS scores when examining the patients. The decision to admit patients to the ICU or pediatric ward was not influenced by the outcome of the PEWS and therefore could not bias our results.

Second, ICU admission and admission to the hospital were chosen as a proxy for acuity because a golden standard for acuity does not exist. Worldwide, hospitalization and ICU admission have been used extensively as a proxy for severity of illness in the ED. Also, it is a limitation.
that vital signs were not measured in all patients. We resolved this problem by using a multiple imputation model that can be used when the outcome measure (ICU admission) and predictor (presence of vital signs) on X and Y are correlated. 38
Lastly, the study population comprises children from 1 hospital, which could influence the generalizability of the results. However, the population included a varied case-mix of ~18,000 children, selected from a multicultural, inner-city ED population, and the result are therefore likely to be generalizable to other pediatric ED populations.

CONCLUSIONS
PEWS are capable of identifying children in need of ICU admission. Scoring systems, with parameters leading to a numeric value, were better able to identify patients at risk than triggering systems, which need 1 positive parameter.

REFERENCES
the Canadian Triage and Acuity Scale pediatric guidelines (PaedCTAS). CJEM. 2008;10(3):224–243

38. Steyerberg EW, van Veen M. Imputation is beneficial for handling missing data in predictive models. J Clin Epidemiol. 2007;60(9):979
APPENDIX 1 Contribution of Single Parameters to the Scoring PEWS

<table>
<thead>
<tr>
<th>PEWS Included Parameters</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavior: level of consciousness</td>
<td>0–3</td>
</tr>
<tr>
<td>Cardiovascular: capillary refill/heart rate</td>
<td>0–3</td>
</tr>
<tr>
<td>Respiratory: work of breathing/oxygen therapy/respiratory rate</td>
<td>0–3</td>
</tr>
<tr>
<td>Duncan et al</td>
<td>0–2</td>
</tr>
<tr>
<td>Heart rate</td>
<td>0–2</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>0–2</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>0–2</td>
</tr>
<tr>
<td>Pulses</td>
<td>0–2</td>
</tr>
<tr>
<td>Oxygen saturation</td>
<td>0–2</td>
</tr>
<tr>
<td>Capillary refill</td>
<td>0–2</td>
</tr>
<tr>
<td>Level of consciousness</td>
<td>0–2</td>
</tr>
<tr>
<td>Oxygen therapy</td>
<td>0–2</td>
</tr>
<tr>
<td>Bolus fluid</td>
<td>0–2</td>
</tr>
<tr>
<td>Temperature</td>
<td>0–2</td>
</tr>
<tr>
<td>Parshuram et al</td>
<td>0–4</td>
</tr>
<tr>
<td>Heart rate</td>
<td>0–4</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>0–4</td>
</tr>
<tr>
<td>Capillary refill</td>
<td>0–4</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>0–4</td>
</tr>
<tr>
<td>Respiratory effort</td>
<td>0–4</td>
</tr>
<tr>
<td>Oxygen saturation</td>
<td>0–2</td>
</tr>
<tr>
<td>Oxygen therapy</td>
<td>0–4</td>
</tr>
<tr>
<td>Egdoll et al</td>
<td>0–3</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>0–3</td>
</tr>
<tr>
<td>Work of breathing</td>
<td>0–3</td>
</tr>
<tr>
<td>Oxygen saturation</td>
<td>0–3</td>
</tr>
<tr>
<td>Temperature</td>
<td>0–3</td>
</tr>
<tr>
<td>Capillary refill</td>
<td>0–3</td>
</tr>
<tr>
<td>Heart rate</td>
<td>0–3</td>
</tr>
<tr>
<td>Level of consciousness</td>
<td>0–3</td>
</tr>
</tbody>
</table>

APPENDIX 2 Sensitivity and Specificity at Different Cutoff Levels for Scoring PEWS

<table>
<thead>
<tr>
<th>PEWS</th>
<th>Cutoff Level</th>
<th>ICU Admission</th>
<th>Admission to Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensitivity (%)</td>
<td>Specificity (%)</td>
<td>Sensitivity (%)</td>
</tr>
<tr>
<td>Monaghan et al</td>
<td>≥1 79.8 85.2 57.7 89.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥2 71.8 72.6 46.6 75.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥3 62.7 80.6 36.0 83.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥4 43.0 94.6 18.9 96.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akre et al</td>
<td>≥1 77.9 67.1 55.8 70.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥2 70.2 75.3 44.2 78.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥3 60.5 83.5 34.0 85.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥4 42.9 94.2 19.1 96.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skaletzky et al</td>
<td>≥1 73.4 76.4 47.4 80.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥2 63.4 86.9 31.1 89.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥3 52.3 91.9 22.0 93.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥4 32.7 97.8 10.8 98.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duncan et al</td>
<td>≥1 96.4 18.6 90.5 20.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥2 87.9 48.8 70.6 52.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥3 78.2 72.7 50.5 78.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥4 61.4 86.8 33.8 90.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥5 46.2 93.8 22.0 96.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parshuram et al</td>
<td>≥1 97.3 18.2 90.6 19.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥2 87.8 48.1 70.3 51.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥3 78.3 72.3 50.7 76.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥4 68.2 84.7 36.6 88.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥5 58.0 90.6 28.6 93.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egdoll et al</td>
<td>≥1 78.4 60.8 58.7 64.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥2 68.1 74.6 43.4 77.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥3 53.2 88.7 27.9 91.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥4 41.2 93.9 18.9 95.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Validity of Different Pediatric Early Warning Scores in the Emergency Department
Nienke Seiger, Ian Maconochie, Rianne Oostenbrink and Henriëtte A. Moll
Pediatrics 2013;132;e841; originally published online September 9, 2013;
DOI: 10.1542/peds.2012-3594

Updated Information & Services
including high resolution figures, can be found at:
/content/132/4/e841.full.html

References
This article cites 31 articles, 12 of which can be accessed free at:
/content/132/4/e841.full.html#ref-list-1

Citations
This article has been cited by 12 HighWire-hosted articles:
/content/132/4/e841.full.html#related-urls

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Critical Care
/cgi/collection/critical_care_sub
Emergency Medicine
/cgi/collection/emergency_medicine_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2013 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.

American Academy of Pediatrics
DEDICATED TO THE HEALTH OF ALL CHILDREN™
Validity of Different Pediatric Early Warning Scores in the Emergency Department

Nienke Seiger, Ian Maconochie, Rianne Oostenbrink and Henriëtte A. Moll

Pediatrics 2013;132;e841; originally published online September 9, 2013;
DOI: 10.1542/peds.2012-3594

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/132/4/e841.full.html