Clinical Practice Guideline for the Diagnosis and Management of Acute Bacterial Sinusitis in Children Aged 1 to 18 Years

OBJECTIVE: To update the American Academy of Pediatrics clinical practice guideline regarding the diagnosis and management of acute bacterial sinusitis in children and adolescents.

METHODS: Analysis of the medical literature published since the last version of the guideline (2001).

RESULTS: The diagnosis of acute bacterial sinusitis is made when a child with an acute upper respiratory tract infection (URI) presents with (1) persistent illness (nasal discharge of any quality or daytime cough or both lasting more than 10 days without improvement), (2) a worsening course (worsening or new onset of nasal discharge, daytime cough, or fever after initial improvement), or (3) severe onset (concurrent fever [temperature $\geq 39^\circ C/102.2^\circ F$] and purulent nasal discharge for at least 3 consecutive days). Clinicians should not obtain imaging studies of any kind to distinguish acute bacterial sinusitis from viral URI, because they do not contribute to the diagnosis; however, a contrast-enhanced computed tomography scan of the paranasal sinuses should be obtained whenever a child is suspected of having orbital or central nervous system complications. The clinician should prescribe antibiotic therapy for acute bacterial sinusitis in children with severe onset or worsening course. The clinician should either prescribe antibiotic therapy or offer additional observation for 3 days to children with persistent illness. Amoxicillin with or without clavulanate is the first-line treatment of acute bacterial sinusitis. Clinicians should reassess initial management if there is either a caregiver report of worsening (progression of initial signs/symptoms or appearance of new signs/symptoms) or failure to improve within 72 hours of initial management. If the diagnosis of acute bacterial sinusitis is confirmed in a child with worsening symptoms or failure to improve, then clinicians may change the antibiotic therapy for the child initially managed with antibiotic or initiate antibiotic treatment of the child initially managed with observation.

CONCLUSIONS: Changes in this revision include the addition of a clinical presentation designated as “worsening course,” an option to treat immediately or observe children with persistent symptoms for 3 days before treating, and a review of evidence indicating that imaging is not necessary in children with uncomplicated acute bacterial sinusitis. Pediatrics 2013;132:e262–e280
INTRODUCTION

Acute bacterial sinusitis is a common complication of viral upper respiratory infection (URI) or allergic inflammation. Using stringent criteria to define acute sinusitis, it has been observed that between 6% and 7% of children seeking care for respiratory symptoms has an illness consistent with this definition.1–4

This clinical practice guideline is a revision of the clinical practice guideline published by the American Academy of Pediatrics (AAP) in 2001.5 It has been developed by a subcommittee of the Steering Committee on Quality Improvement and Management that included physicians with expertise in the fields of primary care pediatrics, academic general pediatrics, family practice, allergy, epidemiology and informatics, pediatric infectious diseases, pediatric otolaryngology, radiology, and pediatric emergency medicine. None of the participants had financial conflicts of interest, and only money from the AAP was used to fund the development of the guideline. The guideline will be reviewed in 5 years unless new evidence emerges that warrants revision sooner.

The guideline is intended for use in a variety of clinical settings (eg, office, emergency department, hospital) by clinicians who treat pediatric patients. The data on which the recommendations are based are included in a companion technical report, published in the electronic pages.6 The Partnership for Policy Implementation has developed a series of definitions using accepted health information technology standards to assist in the implementation of this guideline in computer systems and quality measurement efforts. This document is available at: http://www2.aap.org/informatics/PPI.html.

This revision focuses on the diagnosis and management of acute sinusitis in children between 1 and 18 years of age. It does not apply to children with subacute or chronic sinusitis. Similar to the previous guideline, this document does not consider neonates and children younger than 1 year or children with anatomic abnormalities of the sinuses, immunodeficiencies, cystic fibrosis, or primary ciliary dyskinesia. The most significant areas of change from the 2001 guideline are in the addition of a clinical presentation designated as “worsening course,” inclusion of new data on the effectiveness of antibiotics in children with acute sinusitis,4 and a review of evidence indicating that imaging is not necessary to identify those children who will benefit from antimicrobial therapy.

METHODS

The Subcommittee on Management of Sinusitis met in June 2009 to identify research questions relevant to guideline revision. The primary goal was to update the 2001 report by identifying and reviewing additional studies of pediatric acute sinusitis that have been performed over the past decade. Searches of PubMed were performed by using the same search term as in the 2001 report. All searches were limited to English-language and human studies. Three separate searches were performed to maximize retrieval of the most recent and highest-quality evidence for pediatric sinusitis. The first limited results to all randomized controlled trials (RCTs) from 1966 to 2009, the second to all meta-analyses from 1966 to 2009, and the third to all pediatric studies (limited to ages <18 years) published since the last technical report (1999–2009). Additionally, the Web of Science was queried to identify studies that cited the original AAP guidelines. This literature search was replicated in July 2010.

FIGURE 1
Levels of recommendations. Rec, recommendation.
and November 2012 to capture recently published studies. The complete results of the literature review are published separately in the technical report. In summary, 17 randomized studies of sinusitis in children were identified and reviewed. Only 3 trials met inclusion criteria. Because of significant heterogeneity among these studies, formal meta-analyses were not pursued. The results from the literature review were used to guide development of the key action statements included in this document. These action statements were generated by using BRIDGE-Wiz (Building Recommendations in a Developers Guideline Editor, Yale School of Medicine, New Haven, CT), an interactive software tool that leads guideline development through a series of questions that are intended to create a more actionable set of key action statements. BRIDGE-Wiz also incorporates the quality of available evidence into the final determination of the strength of each recommendation. The AAP policy statement “Classifying Recommendations for Clinical Practice Guidelines” was followed in designating levels of recommendations (Fig 1). Definitions of evidence-based statements are provided in Table 1. This guideline was reviewed by multiple groups in the AAP and 2 external organizations. Comments were compiled and reviewed by the subcommittee, and relevant changes were incorporated into the guideline.

KEY ACTION STATEMENTS

Key Action Statement 1

Clinicians should make a presumptive diagnosis of acute bacterial sinusitis when a child with an acute URI presents with the following:

- Persistent illness, ie, nasal discharge (of any quality) or daytime cough or both lasting more than 10 days without improvement;
 OR
- Worsening course, ie, worsening or new onset of nasal discharge, daytime cough, or fever after initial improvement;
 OR
- Severe onset, ie, concurrent fever (temperature ≥39°C/102.2°F) and purulent nasal discharge for at least 3 consecutive days (Evidence Quality: B; Recommendation).

TABLE 1 Guideline Definitions for Evidence-Based Statements

<table>
<thead>
<tr>
<th>Statement</th>
<th>Definition</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong recommendation</td>
<td>A strong recommendation in favor of a particular action is made when the anticipated benefits of the recommended intervention clearly exceed the harms (as a strong recommendation against an action is made when the anticipated harms clearly exceed the benefits) and the quality of the supporting evidence is excellent. In some clearly identified circumstances, strong recommendations may be made when high-quality evidence is impossible to obtain and the anticipated benefits strongly outweigh the harms.</td>
<td>Clinicians should follow a strong recommendation unless a clear and compelling rationale for an alternative approach is present.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>A recommendation in favor of a particular action is made when the anticipated benefits exceed the harms but the quality of evidence is not as strong. Again, in some clearly identified circumstances, recommendations may be made when high-quality evidence is impossible to obtain but the anticipated benefits outweigh the harms.</td>
<td>Clinicians would be prudent to follow a recommendation, but should remain alert to new information and sensitive to patient preferences.</td>
</tr>
<tr>
<td>Option</td>
<td>Options define courses that may be taken when either the quality of evidence is suspect or carefully performed studies have shown little clear advantage to one approach over another.</td>
<td>Clinicians should consider the option in their decision-making, and patient preference may have a substantial role.</td>
</tr>
<tr>
<td>No recommendation</td>
<td>No recommendation indicates that there is a lack of pertinent published evidence and that the anticipated balance of benefits and harms is presently unclear.</td>
<td>Clinicians should be alert to new published evidence that clarifies the balance of benefit versus harm.</td>
</tr>
</tbody>
</table>
The purpose of this action statement is to guide the practitioner in making a diagnosis of acute bacterial sinusitis on the basis of stringent clinical criteria. To develop criteria to be used in distinguishing episodes of acute bacterial sinusitis from other common respiratory infections, it is helpful to describe the features of an uncomplicated viral URI. Viral URIs are usually characterized by nasal symptoms (discharge and congestion/obstruction) or cough or both. Most often, the nasal discharge begins as clear and watery. Often, however, the quality of nasal discharge changes during the course of the illness. Typically, the nasal discharge becomes thicker and more mucoid and may become purulent (thick, colored, and opaque) for several days. Then the situation reverses, with the purulent discharge becoming mucoid and then clear again or simply resolving. The transition from clear to purulent to clear again occurs in uncomplicated viral URIs without the use of antimicrobial therapy.

Fever, when present in uncomplicated viral URI, tends to occur early in the illness, often in concert with other constitutional symptoms such as headache and myalgias. Typically, the fever and constitutional symptoms disappear in the first 24 to 48 hours, and the respiratory symptoms become more prominent (Fig 2).

The course of most uncomplicated viral URIs is 5 to 7 days. As shown in Fig 2, respiratory symptoms usually peak in severity by days 3 to 6 and then begin to improve; however, resolving symptoms and signs may persist in some patients after day 10.

Symptoms of acute bacterial sinusitis and uncomplicated viral URI overlap considerably, and therefore it is their persistence without improvement that suggests a diagnosis of acute sinusitis. Such symptoms include nasal discharge (of any quality: thick or thin, serous, mucoid, or purulent) or daytime cough (which may be worse at night) or both. Bad breath, fatigue, headache, and decreased appetite, although common, are not specific indicators of acute sinusitis. Physical examination findings are also not particularly helpful in distinguishing sinusitis from uncomplicated URIs. Erythema and swelling of the nasal turbinates are nonspecific findings. Percussion of the sinuses is not useful. Transillumination of the sinuses is difficult to perform correctly in children and has been shown to be unreliable. Nasopharyngeal cultures do not reliably predict the etiology of acute bacterial sinusitis.

Only a minority (~6%–7%) of children presenting with symptoms of URI will meet criteria for persistence. As a result, before diagnosing acute bacterial sinusitis, it is important for the practitioner to attempt to differentiate between sequential episodes of uncomplicated viral URI (which may seem to coalesce in the mind of the patient or parent) from the onset of acute bacterial sinusitis with persistent symptoms and (2) establish whether the symptoms are clearly not improving.

A worsening course of signs and symptoms, termed “double sickening,” in the context of a viral URI is another presentation of acute bacterial sinusitis. Affected children experience substantial and acute worsening of respiratory symptoms (nasal discharge or nasal congestion or daytime cough) or a new fever, often on the sixth or seventh day of illness, after initial signs of recovery from an uncomplicated viral URI. Support for this definition comes from studies in children and adults, for whom antibiotic treatment of worsening symptoms after a period of apparent improvement was associated with better outcomes.

Finally, some children with acute bacterial sinusitis may present with severe onset, ie, concurrent high fever (temperature >39°C) and purulent nasal discharge. These children usually are ill appearing and need to be distinguished from children with uncomplicated viral infections that are unusually severe. If fever is present in uncomplicated viral URIs, it tends to be present early in the illness, usually accompanied by other constitutional symptoms, such as headache and myalgia. Generally, the constitutional symptoms resolve in the first 48 hours and then the respiratory symptoms become prominent. In most uncomplicated viral infections, including influenza, purulent nasal discharge does not appear for several days. Accordingly, it is the concurrent presentation of high fever and purulent nasal discharge for the first 3 to 4 days of an acute URI that helps to define the severe onset of acute bacterial sinusitis. This presentation in children is the corollary to acute onset of headache, fever, and facial pain in adults with acute sinusitis.

Allergic and nonallergic rhinitis are predisposing causes of some cases of acute bacterial sinusitis in childhood. In addition, at their onset, these conditions may be mistaken for acute bacterial sinusitis. A family history of atopic conditions, seasonal occurrences, or occurrences with exposure to common allergens and other
alergic diatheses in the index patient (eczema, atopic dermatitis, asthma) may suggest the presence of non-infectious rhinitis. The patient may have complaints of pruritic eyes and nasal mucosa, which will provide a clue to the likely etiology of the condition. On physical examination, there may be a prominent nasal crease, allergic shiners, cobblestoning of the conjunctiva or pharyngeal, or pale nasal mucosa as other indicators of the diagnosis.

Key Action Statement 2A

Clinicians should not obtain imaging studies (plain films, contrast-enhanced computed tomography [CT], MRI, or ultrasonography) to distinguish acute bacterial sinusitis from viral URI (Evidence Quality: B; Strong Recommendation).

KAS Profile 2A

<table>
<thead>
<tr>
<th>Aggregate evidence quality: B; overwhelmingly consistent evidence from observational studies.</th>
<th>Avoids exposure to radiation and costs of studies. Avoids unnecessary therapy for false-positive diagnoses.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefit</td>
<td></td>
</tr>
<tr>
<td>Harm</td>
<td>None.</td>
</tr>
<tr>
<td>Cost</td>
<td>Avoids cost of imaging.</td>
</tr>
<tr>
<td>Benefits-harm assessment</td>
<td>Exclusive benefit.</td>
</tr>
<tr>
<td>Value judgments</td>
<td>Concern for unnecessary radiation and costs.</td>
</tr>
<tr>
<td>Role of patient preference</td>
<td>Limited. Parents may value a negative study and avoidance of antibiotics as worthy of radiation but panel disagrees.</td>
</tr>
<tr>
<td>Intentional vagueness</td>
<td>None.</td>
</tr>
<tr>
<td>Exclusions</td>
<td>Patients with complications of sinusitis.</td>
</tr>
<tr>
<td>Strength</td>
<td>Strong recommendation.</td>
</tr>
</tbody>
</table>

The purpose of this key action statement is to discourage the practitioner from obtaining imaging studies in children with uncomplicated acute bacterial sinusitis. As emphasized in Key Action Statement 1, acute bacterial sinusitis in children is a diagnosis that is made on the basis of stringent clinical criteria that describe signs, symptoms, and temporal patterns of a URI. Although historically imaging has been used as a confirmatory or diagnostic modality in children suspected to have acute bacterial sinusitis, it is no longer recommended.

The membranes that line the nose are continuous with the membranes (mucosa) that line the sinus cavities, the middle ear, the nasopharynx, and the oropharynx. When an individual experiences a viral URI, there is inflammation of the nasal mucosa and, often, the mucosa of the middle ear and paranasal sinuses as well. The continuity of the mucosa of the upper respiratory tract is responsible for the controversy regarding the usefulness of images of the paranasal sinuses in contributing to a diagnosis of acute bacterial sinusitis.

As early as the 1940s, observations were made regarding the frequency of abnormal sinus radiographs in healthy children without signs or symptoms of current respiratory disease. In addition, several investigators in the 1970s and 1980s observed that children with uncomplicated viral URI had frequent abnormalities of the paranasal sinuses on plain radiographs. These abnormalities were the same as those considered to be diagnostic of acute bacterial sinusitis (diffuse opacification, mucosal swelling of at least 4 mm, or an air-fluid level). As technology advanced and CT scanning of the central nervous system and skull became prevalent, several studies reported on incidental abnormalities of the paranasal sinuses that were observed in children. Gwatney et al showed striking abnormalities (including air-fluid levels) in sinus CT scans of young adults with uncomplicated colds. Manning et al evaluated children undergoing either CT or MRI of the head for indications other than respiratory complaints or suspected sinusitis. Each patient underwent rhinoscopy and otoscopy before imaging and each patient’s parent was asked to fill out a questionnaire regarding recent symptoms of URI. Sixty-two percent of patients overall had physical findings or history consistent with an upper respiratory inflammatory process, and 55% of the total group showed some abnormalities on sinus imaging; 33% showed pronounced mucosal thickening or an air-fluid level. Gordts et al made similar observations in children undergoing MRI. Finally, Kristo et al performed MRI in children with URIs and confirmed the high frequency (68%) of major abnormalities seen in the paranasal sinuses.

In summary, when the paranasal sinuses are imaged, either with plain radiographs, contrast-enhanced CT, or MRI in children with uncomplicated URI, the majority of studies will be significantly abnormal with the same kind of findings that are associated with bacterial infection of the sinuses. Accordingly, although normal radiographs or CT or MRI results can ensure that a patient with respiratory symptoms does not have acute bacterial sinusitis, an abnormal image cannot confirm the diagnosis. Therefore, it is not necessary to perform imaging in children with uncomplicated episodes of clinical sinusitis. Similarly, the high likelihood of an abnormal imaging result in a child with an uncomplicated URI indicates that radiographic studies...
Key Action Statement 2B

Clinicians should obtain a contrast-enhanced CT scan of the paranasal sinuses and/or an MRI with contrast whenever a child is suspected of having orbital or central nervous system complications of acute bacterial sinusitis (Evidence Quality: B; Strong Recommendation).

KAS Profile 2B

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Determine presence of abscesses, which may require surgical intervention; avoid sequelae because of appropriate aggressive management.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harm</td>
<td>Exposure to ionizing radiation for CT scans; need for sedation for MRI.</td>
</tr>
<tr>
<td>Cost</td>
<td>Direct cost of studies.</td>
</tr>
<tr>
<td>Benefits-harm assessment</td>
<td>Preponderance of benefit.</td>
</tr>
<tr>
<td>Value judgments</td>
<td>Concern for significant complication that may be unrecognized and, therefore, not treated appropriately.</td>
</tr>
<tr>
<td>Role of patient preference</td>
<td>Limited.</td>
</tr>
<tr>
<td>Intentional vagueness</td>
<td>None.</td>
</tr>
<tr>
<td>Exclusions</td>
<td>None.</td>
</tr>
<tr>
<td>Strength</td>
<td>Strong recommendation.</td>
</tr>
</tbody>
</table>

The purpose of this key action statement is to have the clinician obtain contrast-enhanced CT images when children are suspected of having serious complications of acute bacterial sinusitis. The most common complication of acute sinusitis involves the orbit in children with ethmoid sinusitis who are younger than 5 years.29–31 Orbital complications should be suspected when the child presents with a swollen eye, especially if accompanied by proptosis or impaired function of the extraocular muscles. Orbital complications of acute sinusitis have been divided into 5 categories: sympathetic effusion, subperiosteal abscess, orbital cellulitis, orbital abscess, and cavernous sinus thrombosis.32 Although sympathetic effusion (inflammatory edema) is categorized as an orbital complication, the site of infection remains confined to the sinus cavities; eye swelling is attributable to the impedance of venous drainage secondary to congestion within the ethmoid sinuses. Alternative terms for sympathetic effusion (inflammatory edema) are preseptal or periorbital cellulitis. The remaining “true” orbital complications are best visualized by contrast-enhanced CT scanning.

Intracranial complications of acute sinusitis, which are substantially less common than orbital complications, are more serious, with higher morbidity and mortality than those involving the orbit. Intracranial complications should be suspected in the patient who presents with a very severe headache, photophobia, seizures, or other focal neurologic findings. Intracranial complications include subdural empyema, epidural empyema, venous thrombosis, brain abscess, and meningitis.29 Typically, patients with intracranial complications of acute bacterial sinusitis are previously healthy adolescent males with frontal sinusitis.33,34

There have been no head-to-head comparisons of the diagnostic accuracy of contrast-enhanced CT scanning to MRI with contrast in the evaluation of orbital and intracranial complications of sinusitis in children. In general, the contrast-enhanced CT scan has been the preferred imaging study when complications of sinusitis are suspected.35,36 However, there are documented cases in which a contrast-enhanced CT scan has not revealed the abnormality responsible for the clinical presentation and the MRI with contrast has, especially for intracranial complications and rarely for orbital complications.37,38 Accordingly, the most recent appropriateness criteria from the American College of Radiology endorse both MRI with contrast and contrast-enhanced CT as complementary examinations when evaluating potential complications of sinusitis.39 The availability and speed of obtaining the contrast-enhanced CT are desirable; however, there is increasing concern regarding exposure to radiation. The MRI, although very sensitive, takes longer than the contrast-enhanced CT and often requires sedation in young children (which carries its own risks). In older children and adolescents who may not require sedation, MRI with contrast, if available, may be preferred when intracranial complications are likely. Furthermore, MRI with contrast should be performed when there is persistent clinical concern or incomplete information has been provided by the contrast-enhanced CT scan.

Key Action Statement 3

Initial Management of Acute Bacterial Sinusitis

3A: “Severe onset and worsening course” acute bacterial sinusitis. The clinician should prescribe antibiotic therapy for acute bacterial sinusitis in children with severe onset or worsening course (signs, symptoms, or both) (Evidence Quality: B; Strong Recommendation).
KAS Profile 3A

Aggregate evidence quality: B; randomized controlled trials with limitations.

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Increase clinical cures, shorten illness duration, and may prevent suppurrative complications in a high-risk patient population.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harm</td>
<td>Adverse effects of antibiotics.</td>
</tr>
<tr>
<td>Cost</td>
<td>Direct cost of therapy.</td>
</tr>
<tr>
<td>Benefits-harm assessment</td>
<td>Preponderance of benefit.</td>
</tr>
<tr>
<td>Value judgments</td>
<td>Concern for morbidity and possible complications if untreated.</td>
</tr>
<tr>
<td>Role of patient preference</td>
<td>Limited.</td>
</tr>
<tr>
<td>Intentional vagueness</td>
<td>None.</td>
</tr>
<tr>
<td>Exclusions</td>
<td>None.</td>
</tr>
<tr>
<td>Strength</td>
<td>Strong recommendation.</td>
</tr>
</tbody>
</table>

3B: “Persistent illness.” The clinician should either prescribe antibiotic therapy OR offer additional outpatient observation for 3 days to children with persistent illness (nasal discharge of any quality or cough or both for at least 10 days without evidence of improvement) (Evidence Quality: B; Recommendation).

The purpose of this section is to offer guidance on initial management of persistent illness sinusitis by helping clinicians choose between the following 2 strategies:

1. Antibiotic therapy, defined as initial treatment of acute bacterial sinusitis with antibiotics, with the intent of starting antibiotic therapy as soon as possible after the encounter.

2. Additional outpatient observation, defined as initial management of acute bacterial sinusitis limited to continued observation for 3 days, with commencement of antibiotic therapy if either the child does not improve clinically within several days of diagnosis or if there is clinical worsening of the child’s condition at any time.

In contrast to the 2001 AAP guideline, which recommended antibiotic therapy for all children diagnosed with acute bacterial sinusitis, this guideline allows for additional observation of children presenting with persistent illness (nasal discharge of any quality or daytime cough or both for at least 10 days without evidence of improvement). In both guidelines, however, children presenting with severe or worsening illness (which was not defined explicitly in the 2001 guideline) are to receive antibiotic therapy. The rationale for this approach (Table 2) is discussed below.

Antibiotic Therapy for Acute Bacterial Sinusitis

In the United States, antibiotics are prescribed for 82% of children with acute sinusitis. The rationale for antibiotic therapy of acute bacterial sinusitis is based on the recovery of bacteria in high density (≥10^6 colony-forming units/mL) in 70% of maxillary sinus aspirates obtained from children with a clinical syndrome characterized by persistent nasal discharge, daytime cough, or both. Children who present with severe-onset acute bacterial sinusitis are presumed to have bacterial infection, because a temperature of at least 39°C/102.2°F coexisting for at least 3 consecutive days with purulent nasal discharge is not consistent with the well-documented pattern of acute viral URI. Similarly, children with worsening-course acute bacterial sinusitis have a clinical course that is also not consistent with the steady improvement that characterizes an uncomplicated viral URI.
Three RCTs have compared antibiotic therapy with placebo for the initial management of acute bacterial sinusitis in children. Two trials by Wald et al. found an increase in cure or improvement after antibiotic therapy compared with placebo with a number needed to treat of 3 to 5 children. Most children in these studies had persistent acute bacterial sinusitis, but children with severe or worsening illness were also included. Conversely, Garbutt et al., who studied only children with persistent acute bacterial sinusitis, found no difference in outcomes for antibiotic versus placebo. Another RCT by Kristo et al. often cited as showing no benefit from antibiotics for acute bacterial sinusitis, will not be considered further because of methodologic flaws, including weak entry criteria and inadequate dosing of antibiotic treatment.

The guideline recommends antibiotic therapy for severe or worsening acute bacterial sinusitis because of the benefits revealed in RCTs and a theoretically higher risk of suppurative complications than for children who present with persistent symptoms. Orbital and intracranial complications of acute bacterial sinusitis have not been observed in RCTs, even when placebo was administered; however, sample sizes have inadequate power to preclude an increased risk. This risk, however, has caused some investigators to exclude children with severe acute bacterial sinusitis from trial entry.

KAS Profile 4

- **Benefit**: Increase clinical cures with narrowest spectrum drug; stepwise increase in broadening spectrum as risk factors for resistance increase.
- **Harm**: Adverse effects of antibiotics including development of hypersensitivity.
- **Cost**: Direct cost of antibiotic therapy.
- **Benefits-harm assessment**: Preponderance of benefit.
- **Value judgments**: Concerns for not encouraging resistance if possible.
- **Role of patient preference**: Potential for shared decision-making that should incorporate the caregiver’s experiences and values.
- **Intentional vagueness**: None.
- **Exclusions**: May include allergy or intolerance.
- **Strength**: Recommendation.

Key Action Statement 4

Clinicians should prescribe amoxicillin with or without clavulanate as first-line treatment when a decision has been made to initiate antibiotic treatment of acute bacterial sinusitis (Evidence Quality: B; Recommendation).
The purpose of this key action statement is to guide the selection of antimicrobial therapy once the diagnosis of acute bacterial sinusitis has been made. The microbiology of acute bacterial sinusitis was determined nearly 30 years ago through direct maxillary sinus aspiration in children with compatible signs and symptoms. The major bacterial pathogens recovered at that time were *Streptococcus pneumoniae* in approximately 30% of children and nontypeable *Haemophilus influenzae* and *Moraxella catarrhalis* in approximately 20% each.16,40 Aspirates from the remaining 25 to 30% of children were sterile.

Maxillary sinus aspiration is rarely performed at the present time unless the course of the infection is unusually prolonged or severe. Although some authorities have recommended obtaining cultures from the middle meatus to determine the cause of a maxillary sinus infection, there are no data in children with acute bacterial sinusitis that have compared such cultures with cultures of a maxillary sinus aspirate. Furthermore, there are data indicating that the middle meatus in healthy children is commonly colonized with *S pneumoniae*, *H influenzae*, and *M catarrhalis.*46

Recent estimates of the microbiology of acute sinusitis have, of necessity, been based primarily on that of acute otitis media (AOM), a condition with relatively easy access to infective fluid through performance of tympanocentesis and one with a similar pathogenesis to acute bacterial sinusitis.47,48 The 3 most common bacterial pathogens recovered from the middle ear fluid of children with AOM are the same as those that have been associated with acute bacterial sinusitis: *S pneumoniae*, nontypeable *H influenzae*, and *M catarrhalis.*49 The proportion of each has varied from study to study depending on criteria used for diagnosis of AOM, patient characteristics, and bacteriologic techniques. Recommendations since the year 2000 for the routine use in infants of 7-valent and, more recently, 13-valent pneumococcal conjugate vaccine (PCV-13) have been associated with a decrease in recovery of *S pneumoniae* from ear fluid of children with AOM and a relative increase in the incidence of infections attributable to *H influenzae.*50 Thus, on the basis of the proportions of bacteria found in middle ear infections, it is estimated that *S pneumoniae* and *H influenzae* are currently each responsible for approximately 30% of cases of acute bacterial sinusitis in children, and *M catarrhalis* is responsible for approximately 10%. These percentages are contingent on the assumption that approximately one-quarter of aspirates of maxillary sinusitis would still be sterile, as reported in earlier studies. *Staphylococcus aureus* is rarely isolated from sinus aspirates in children with acute bacterial sinusitis, and with the exception of acute maxillary sinusitis associated with infections of dental origin,51 respiratory anaerobes are also rarely recovered.40,52 Although *S aureus* is a very infrequent cause of acute bacterial sinusitis in children, it is a significant pathogen in the orbital and intracranial complications of sinusitis. The reasons for this discrepancy are unknown.

Antimicrobial susceptibility patterns for *S pneumoniae* vary considerably from community to community. Isolates obtained from surveillance centers nationwide indicate that, at the present time, 10% to 15% of upper respiratory tract isolates of *S pneumoniae* are nonsusceptible to penicillin53,54; however, values for penicillin nonsusceptibility as high as 50% to 60% have been reported in some areas.55,56 Of the organisms that are resistant, approximately half are highly resistant to penicillin and the remaining half are intermediate in resistance.53,54,56–59 Between 10% and 42% of *H influenzae*66–59 and close to 100% of *M catarrhalis* are likely to be β-lactamase positive and nonsusceptible to amoxicillin. Because of dramatic geographic variability in the prevalence of β-lactamase–positive *H influenzae*, it is extremely desirable for the practitioner to be familiar with local patterns of susceptibility. Risk factors for the presence of organisms

<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>Recommendations for Initial Use of Antibiotics for Acute Bacterial Sinusitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Presentation</td>
<td>Severe Acute Bacterial Sinusitis</td>
</tr>
<tr>
<td>Uncomplicated acute bacterial sinusitis without coexisting illness</td>
<td>Antibiotic therapy</td>
</tr>
<tr>
<td>Acute bacterial sinusitis with orbital or intracranial complications</td>
<td>Antibiotic therapy</td>
</tr>
<tr>
<td>Acute bacterial sinusitis with coexisting acute otitis media, pneumonia, adenitis, or streptococcal pharyngitis</td>
<td>Antibiotic therapy</td>
</tr>
</tbody>
</table>

* Defined as temperature ≥39°C and purulent (thick, colored, and opaque) nasal discharge present concurrently for at least 3 consecutive days.
* Defined as nasal discharge or daytime cough with sudden worsening of symptoms (manifested by new-onset fever ≥38°C/100.4°F or substantial increase in nasal discharge or cough) after having experienced transient improvement of symptoms.
* Defined as nasal discharge (of any quality), daytime cough (which may be worse at night), or both, persisting for >10 days without improvement.
* Opportunity for shared decision-making with the child’s family. If observation is offered, a mechanism must be in place to ensure follow-up and begin antibiotics if the child worsens at any time or fails to improve within 3 days of observation.

[38x615]C/100.4°F or substantial increase in nasal discharge or cough) after having experienced transient improvement of

[38x275]each.16,40 Aspirates from the remain-

[38x288]ella catarrhalis

[38x300]Haemophilus in

[38x313]30% of children and nontypeable

[38x31]e270

FROM THE AMERICAN ACADEMY OF PEDIATRICS

The major bacterial pathogens re-

[38x365]maxillary sinus aspiration in children

[38x391]nearly 30 years ago through direct

[38x404]bacterial sinusitis was determined

[38x430]of acute bacterial sinusitis has been

[38x443]timicrobial therapy once the diagnosis

[38x531]c De

[38x558]b De

[38x576]a De

[38x645]Acute bacterial sinusitis with

[38x675]Uncomplicated acute bacterial

[38x713]TABLE 2 Recommendations for Initial Use of Antibiotics for Acute Bacterial Sinusitis

[38x519]days without improvement.

[38x77]highly resistant to penicillin and the remain-

[38x103]cultures of a maxillary sinus aspirate.

[38x116]that have compared such cultures with

[38x142]worsening of symptoms (manifested by new-onset fever ≥38°C/100.4°F or substantial increase in nasal discharge or cough) after having experienced transient improvement of symptoms.47,48 The 3 most common bacterial pathogens recovered from the middle meatus in children were *Streptococcus pneumoniae* in approximately 30% of children and nontypeable *Haemophilus influenzae* and *Moraxella catarrhalis* in approximately 20% each.16,40 Aspirates from the remaining 25 to 30% of children were sterile.

Maxillary sinus aspiration is rarely performed at the present time unless the course of the infection is unusually prolonged or severe. Although some authorities have recommended obtaining cultures from the middle meatus to determine the cause of a maxillary sinus infection, there are no data in children with acute bacterial sinusitis that have compared such cultures with cultures of a maxillary sinus aspirate. Furthermore, there are data indicating that the middle meatus in healthy children is commonly colonized with *S pneumoniae*, *H influenzae*, and *M catarrhalis*.46 Recent estimates of the microbiology of acute sinusitis have, of necessity, been based primarily on that of acute otitis media (AOM), a condition with relatively easy access to infective fluid through performance of tympanocentesis and one with a similar pathogenesis to acute bacterial sinusitis.47,48 The 3 most common bacterial pathogens recovered from the middle ear fluid of children with AOM are the same as those that have been associated with acute bacterial sinusitis: *S pneumoniae*, nontypeable *H influenzae*, and *M catarrhalis*.49 The proportion of each has varied from study to study depending on criteria used for diagnosis of AOM, patient characteristics, and bacteriologic techniques. Recommendations since the year 2000 for the routine use in infants of 7-valent and, more recently, 13-valent pneumococcal conjugate vaccine (PCV-13) have been associated with a decrease in recovery of *S pneumoniae* from ear fluid of children with AOM and a relative increase in the incidence of infections attributable to *H influenzae*.50 Thus, on the basis of the proportions of bacteria found in middle ear infections, it is estimated that *S pneumoniae* and *H influenzae* are currently each responsible for approximately 30% of cases of acute bacterial sinusitis in children, and *M catarrhalis* is responsible for approximately 10%. These percentages are contingent on the assumption that approximately one-quarter of aspirates of maxillary sinusitis would still be sterile, as reported in earlier studies. *Staphylococcus aureus* is rarely isolated from sinus aspirates in children with acute bacterial sinusitis, and with the exception of acute maxillary sinusitis associated with infections of dental origin,51 respiratory anaerobes are also rarely recovered.40,52 Although *S aureus* is a very infrequent cause of acute bacterial sinusitis in children, it is a significant pathogen in the orbital and intracranial complications of sinusitis. The reasons for this discrepancy are unknown.

Antimicrobial susceptibility patterns for *S pneumoniae* vary considerably from community to community. Isolates obtained from surveillance centers nationwide indicate that, at the present time, 10% to 15% of upper respiratory tract isolates of *S pneumoniae* are nonsusceptible to penicillin53,54; however, values for penicillin nonsusceptibility as high as 50% to 60% have been reported in some areas.55,56 Of the organisms that are resistant, approximately half are highly resistant to penicillin and the remaining half are intermediate in resistance.53,54,56–59 Between 10% and 42% of *H influenzae*66–59 and close to 100% of *M catarrhalis* are likely to be β-lactamase positive and nonsusceptible to amoxicillin. Because of dramatic geographic variability in the prevalence of β-lactamase–positive *H influenzae*, it is extremely desirable for the practitioner to be familiar with local patterns of susceptibility. Risk factors for the presence of organisms
likely to be resistant to amoxicillin in- include attendance at child care, receipt of antimicrobial treatment within the previous 30 days, and age younger than 2 years.50,55,60

Amoxicillin remains the antimicrobial agent of choice for first-line treatment of uncomplicated acute bacterial sinusitis in situations in which antimicrobial resistance is not suspected. This recommendation is based on amoxicillin’s effectiveness, safety, acceptable taste, low cost, and relatively narrow microbiologic spectrum. For children aged 2 years or older with uncomplicated acute bacterial sinusitis that is mild to moderate in degree of severity who do not attend child care and who have not been treated with an antimicrobial agent within the last 4 weeks, amoxicillin is recommended at a standard dose of 45 mg/kg per day in 2 divided doses. In communities with a high prevalence of nonsusceptible S pneumoniae (>10%, including intermediate- and high-level resistance), treatment may be initiated at 80 to 90 mg/kg per day in 2 divided doses, with a maximum of 2 g per dose.55 This high-dose amoxicillin therapy is likely to achieve sinus fluid concentrations that are adequate to overcome the resistance of S pneumoniae, which is attributable to alteration in penicillin-binding proteins on the basis of data derived from patients with AOM.61 If, within the next several years after licensure of PCV-13, a continuing decrease in isolates of S pneumoniae (including a decrease in isolates of nonsusceptible S pneumoniae) and an increase in β-lactamase–producing H influenzae are observed, standard-dose amoxicillin-clavulanate (45 mg/kg per day) may be most appropriate.

Patients presenting with moderate to severe illness as well as those younger than 2 years, attending child care, or who have recently been treated with an antimicrobial may receive high-dose amoxicillin-clavulanate (80–90 mg/kg per day of the amoxicillin component with 6.4 mg/kg per day of clavulanate in 2 divided doses with a maximum of 2 g per dose). The potassium clavulanate levels are adequate to inhibit all β-lactamase–producing H influenzae and M catarrhalis.56,59

A single 50-mg/kg dose of ceftriaxone, given either intravenously or intramuscularly, can be used for children who are vomiting, unable to tolerate oral medication, or unlikely to be adherent to the initial doses of antibiotic.62–64 The 3 major bacterial pathogens involved in acute bacterial sinusitis are susceptible to ceftriaxone in 95% to 100% of cases.65,68 If clinical improvement is observed at 24 hours, an oral antibiotic can be substituted to complete the course of therapy. Children who are still significantly febrile or symptomatic at 24 hours may require additional parenteral doses before switching to oral therapy.

The treatment of patients with presumed allergy to penicillin has been controversial. However, recent publications indicate that the risk of a serious allergic reaction to second- and third-generation cephalosporins in patients with penicillin or amoxicillin allergy appears to be almost nil and no greater than the risk among patients without such allergy.65–67 Thus, patients allergic to amoxicillin with a non–type 1 (late or delayed, >72 hours) hypersensitivity reaction can safely be treated with cefdinir, cefuroxime, or cefpodoxime.66–68

Patients with a history of a serious type 1 immediate or accelerated (anaphylactoid) reaction to amoxicillin can also safely be treated with cefdinir, cefuroxime, or cefpodoxime. In both circumstances, clinicians may wish to determine individual tolerance by referral to an allergist for penicillin and/or cephalosporin skin-testing before initiation of therapy.66–68 The susceptibility of S pneumoniae to cefdinir, cefpodoxime, and cefuroxime varies from 60% to 75%,66–68 and the susceptibility of H influenzae to these agents varies from 85% to 100%.66,58 In young children (<2 years) with a serious type 1 hypersensitivity to penicillin and moderate or more severe sinusitis, it may be prudent to use a combination of clindamycin (or linezolid) and cefixime to achieve the most comprehensive coverage against both resistant S pneumoniae and H influenzae. Linezolid has excellent activity against all S pneumoniae, including penicillin-resistant strains, but lacks activity against H influenzae and M catarrhalis. Alternatively, a quinolone, such as levofloxacin, which has a high level of activity against both S pneumoniae and H influenzae, may be prescribed.67,58 Although the use of quinolones is usually restricted because of concerns for toxicity, cost, and emerging resistance, their use in this circumstance can be justified.

Pneumococcal and H influenzae surveillance studies have indicated that resistance of these organisms to trimethoprim-sulfamethoxazole and azithromycin is sufficient to preclude their use for treatment of acute bacterial sinusitis in patients with penicillin hypersensitivity.56,58,59,69

The optimal duration of antimicrobial therapy for patients with acute bacterial sinusitis has not received systematic study. Recommendations based on clinical observations have varied widely, from 10 to 28 days of treatment. An alternative suggestion has been made that antibiotic therapy be continued for 7 days after the patient becomes free of signs and symptoms.5 This strategy has the advantage of individualizing the treatment of each patient, results in a minimum course of 10 days, and
Patients who are acutely ill and appear toxic when first seen (see below) can be managed with 1 of 2 options. Consultation can be requested from an otolaryngologist for consideration of maxillary sinus aspiration (with appropriate analgesia/anesthesia) to obtain a sample of sinus secretions for Gram stain, culture, and susceptibility testing so that antimicrobial therapy can be adjusted precisely. Alternatively, inpatient therapy can be initiated with intravenous cefotaxime or ceftriaxone, with referral to an otolaryngologist if the patient’s condition worsens or fails to show improvement within 48 hours. If a complication is suspected, management will differ depending on the site and severity.

A recent guideline was published by the Infectious Diseases Society of America for acute bacterial rhinosinusitis in children and adults.70 Their recommendation for initial empirical antimicrobial therapy for acute bacterial sinusitis in children was amoxicillin-clavulanate based on the concern that there is an increasing prevalence of *H influenzae* as a cause of sinusitis since introduction of the pneumococcal conjugate vaccines and an increasing prevalence of β-lactamase production among these strains. In contrast, this guideline from the AAP allows either amoxicillin or amoxicillin-clavulanate as first-line empirical therapy and is therefore inclusive of the Infectious Diseases Society of America’s recommendation. Unfortunately, there are scant data available regarding the precise microbiology of acute bacterial sinusitis in the post-PCV-13 era. Prospective surveillance of nasopharyngeal cultures may be helpful in completely aligning these recommendations in the future.

Key Action Statement 5A

Clinicians should reassess initial management if there is either a caregiver report of worsening (progression of initial signs/symptoms or appearance of new signs/symptoms) OR failure to improve (lack of reduction in all presenting signs/symptoms) within 72 hours of initial management (Evidence Quality: C; Recommendation).

KAS Profile 5A

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Identification of patients who may have been misdiagnosed, those at risk of complications, and those who require a change in management.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harm</td>
<td>Delay of up to 72 hours in changing therapy if patient fails to improve.</td>
</tr>
<tr>
<td>Cost</td>
<td>Additional provider and caregiver time and resources.</td>
</tr>
<tr>
<td>Benefits-harm assessment</td>
<td>Preponderance of benefit. Use of 72 hours to assess progress may result in excessive classification as treatment failures if premature; emphasis on importance of worsening illness in defining treatment failures.</td>
</tr>
<tr>
<td>Value judgments</td>
<td>Use of 72 hours to assess progress may result in excessive classification as treatment failures if premature; emphasis on importance of worsening illness in defining treatment failures.</td>
</tr>
<tr>
<td>Role of patient preferences</td>
<td>Caregivers determine whether the severity of the patient’s illness justifies the report to clinician of the patient’s worsening or failure to improve.</td>
</tr>
<tr>
<td>Intentional vagueness</td>
<td>None.</td>
</tr>
<tr>
<td>Exclusions</td>
<td>Patients with severe illness, poor general health, complicated sinusitis, immune deficiency, previous sinus surgery, or coexisting bacterial illness.</td>
</tr>
<tr>
<td>Strength</td>
<td>Recommendation.</td>
</tr>
</tbody>
</table>

The purpose of this key action statement is to ensure that patients with acute bacterial sinusitis who fail to improve symptomatically after initial management are reassessed to be certain that they have been correctly diagnosed and to consider initiation of alternate therapy to hasten resolution of symptoms and avoid complications. “Worsening” is defined as progression of presenting signs or symptoms of acute bacterial sinusitis or onset of new signs or symptoms. “Failure to improve” is lack of reduction in presenting signs or symptoms of acute bacterial sinusitis by 72 hours after diagnosis and initial management; patients with persistent but improving symptoms do not meet this definition. The rationale for using 72 hours as the time to assess treatment failure for acute bacterial sinusitis is based on clinical outcomes in RCTs. Wald et al41 found that 18 of 35 patients (51%) receiving placebo demonstrated symptomatic improvement within 3 days of initiation of treatment; only an additional 3 patients receiving placebo (9%) improved between days 3 and 10. In the same study, 48 of 58 patients...
the first 3 days of study entry whether they received active treatment or placebo. Reporting of either worsening or failure to improve implies a shared responsibility between clinician and caregiver. Although the clinician should educate the caregiver regarding the anticipated reduction in symptoms within 3 days, it is incumbent on the caregiver to appropriately notify the clinician of concerns regarding worsening or failure to improve. Clinicians should emphasize the importance of reassessing those children whose symptoms are worsening whether or not antibiotic therapy was prescribed. Reassessment may be indicated before the 72-hour process by which such reporting occurs should be discussed at the time the initial management strategy is determined.

Key Action Statement 5B

If the diagnosis of acute bacterial sinusitis is confirmed in a child with worsening symptoms or failure to improve in 72 hours, then clinicians may change the antibiotic therapy for the child initially managed with antibiotic OR initiate antibiotic treatment of the child initially managed with observation (Evidence Quality: D; Option based on expert opinion, case reports, and reasoning from first principles).

The purpose of this key action statement is to ensure optimal antimicrobial treatment of children with acute bacterial sinusitis whose symptoms worsen or fail to respond to the initial intervention to prevent complications and reduce symptom severity and duration (see Table 4).

Clinicians who are notified by a caregiver that a child's symptoms are worsening or failing to improve should confirm that the clinical diagnosis of acute bacterial sinusitis corresponds to the patient's pattern of illness, as defined in Key Action Statement 1. If caregivers report worsening of symptoms at any time in a patient for whom observation was the initial intervention, the clinician should begin treatment as discussed in Key Action Statement 4. For patients whose symptoms are mild and who have failed to improve but have not worsened, initiation of antimicrobial agents or continued observation (for up to 3 days) is reasonable.

If caregivers report worsening of symptoms after 3 days in a patient initially treated with antimicrobial agents, current signs and symptoms should be reviewed to determine whether acute bacterial sinusitis is still the best diagnosis. If sinusitis is still the best diagnosis, infection with drug-resistant bacteria is probable, and an alternate antimicrobial agent may be administered. Face-to-face reevaluation of the patient is desirable. Once the decision is made to change medications, the clinician should consider the limitations of the initial antibiotic coverage, the anticipated susceptibility of residual bacterial pathogens, and the ability of antibiotics to adequately penetrate the site of infection. Cultures of sinus or nasopharyngeal secretions in patients with initial antibiotic failure have identified a large percentage of bacteria with resistance to the original antibiotic. Furthermore, multidrug-resistant S. pneumoniae and β-lactamase–positive H. influenzae and M. catarrhalis are more commonly isolated after previous antibiotic exposure. Unfortunately, there are no studies in children that have investigated the microbiology of treatment failure in acute bacterial sinusitis or cure rates using second-line antimicrobial agents. As a result, the likelihood of adequate antibiotic coverage for resistant organisms must be
addressed by extrapolations from studies of acute otitis media in children and sinusitis in adults and by using the results of data generated in vitro. A general guide to management of the child who worsens in 72 hours is shown in Table 4.

NO RECOMMENDATION

Adjuvant Therapy

Potential adjuvant therapy for acute sinusitis might include intranasal corticosteroids, saline nasal irrigation or lavage, topical or oral decongestants, mucolytics, and topical or oral antihistamines. A recent Cochrane review on decongestants, antihistamines, and nasal irrigation for acute sinusitis in children found no appropriately designed studies to determine the effectiveness of these interventions.79

Intranasal Steroids

The rationale for the use of intranasal corticosteroids in acute bacterial sinusitis is that an antiinflammatory agent may reduce the swelling around the sinus ostia and encourage drainage, thereby hastening recovery. However, there are limited data on how much inflammation is present, whether the inflammation is responsive to steroids, and whether there are differences in responsivity according to age. Nonetheless, there are several RCTs in adolescents and adults, most of which do show significant differences compared with placebo or active comparator that favor intranasal steroids in the reduction of symptoms and the patient’s global assessment of overall improvement.80–85 Several studies in adults with acute bacterial sinusitis provide data supporting the use of intranasal steroids as either monotherapy or adjuvant therapy to antibiotics.81,86 Only one study did not show efficacy.85

There have been 2 trials of intranasal steroids performed exclusively in children: one comparing intranasal corticosteroids versus an oral decongestant87 and the other comparing intranasal corticosteroids with placebo.88 These studies showed a greater rate of complete resolution87 or greater reduction in symptoms in patients receiving the steroid preparation, although the effects were modest.88 It is important to note that nearly all of these studies (both those reported in children and adults) suffered from substantial methodologic problems. Examples of these methodologic problems are as follows: (1) variable inclusion criteria for sinusitis, (2) mixed populations of allergic and nonallergic subjects, and (3) different outcome criteria. All of these factors make deriving a clear conclusion difficult. Furthermore, the lack of stringent criteria in selecting the subject population increases the chance that the subjects had viral URIs or even persistent allergies rather than acute bacterial sinusitis.

The intranasal steroids studied to date include budesonide, flunisolide, fluticasone, and mometasone. There is no reason to believe that one steroid would be more effective than another, provided equivalent doses are used. Potential harm in using nasal steroids in children with acute sinusitis includes the increased cost of therapy, difficulty in effectively administering nasal sprays in young children, nasal irritation and epistaxis, and potential systemic adverse effects of steroid use. Fortunately, no clinically significant steroid adverse effects have been discovered in studies in children.99–96

Saline Irrigation

Saline nasal irrigation or lavage (not saline nasal spray) has been used to remove debris from the nasal cavity and temporarily reduce tissue edema (hypertonic saline) to promote drainage from the sinuses. There have been very few RCTs using saline nasal irrigation or lavage in acute sinusitis, and these have had mixed results.97,98 The 1 study in children showed greater improvement in nasal airflow and quality of life as well as a better rate of improvement in total symptom score when compared with placebo in patients treated with antibiotics and decongestants.98 There are 2 Cochrane reviews published on the use of saline nasal irrigation in acute sinusitis in adults that showed variable results. One review published in 200799 concluded that it is a beneficial adjunct, but the other, published in 2010,100 concluded that most trials were too small or contained too high a risk of bias to be confident about benefits.

Nasal Decongestants, Mucolytics, and Antihistamines

Data are insufficient to make any recommendations about the use of oral or topical nasal decongestants, mucolytics, or oral or nasal spray antihistamines as adjuvant therapy for acute bacterial sinusitis in children.79 It is the opinion of the expert panel that antihistamines should not be used for the primary indication of acute bacterial sinusitis in any child, although such therapy might be helpful in reducing typical allergic symptoms in patients with atopy who also have acute sinusitis.

OTHER RELATED CONDITIONS

Recurrence of Acute Bacterial Sinusitis

Recurrent acute bacterial sinusitis (RABS) is an uncommon occurrence in healthy children and must be distinguished from recurrent URIs, exacerbations of allergic rhinitis, and chronic sinusitis. The former is defined by episodes of bacterial infection of the paranasal sinuses lasting fewer than 30 days and separated by intervals of
at least 10 days during which the patient is asymptomatic. Some experts require at least 4 episodes in a calendar year to fulfill the criteria for this condition. Chronic sinusitis is manifest as 90 or more uninterrupted days of respiratory symptoms, such as cough, nasal discharge, or nasal obstruction. Children with RABS should be evaluated for underlying allergies, particularly allergic rhinitis, quantitative and functional immunologic defect(s), chiefly immunoglobulin A and immunoglobulin G deficiency; cystic fibrosis; gastroesophageal reflux disease; or dysmotile cilia syndrome. Anatomic abnormalities obstructing one or more sinus ostia may be present. These include septal deviation, nasal polyps, or concha bullosa (pneumatization of the middle turbinate); atypical ethmoid cells with compromised drainage; a lateralized middle turbinate; and intrinsic ostiomeatal anomalies. Contrast-enhanced CT, MRI, or endoscopy or all 3 should be performed for detection of obstructive conditions, particularly in children with genetic or acquired craniofacial abnormalities.

The microbiology of RABS is similar to that of isolated episodes of acute bacterial sinusitis and warrants the same treatment. It should be recognized that closely spaced sequential courses of antimicrobial therapy may foster the emergence of antibiotic-resistant bacterial species as the causative agent in recurrent episodes. There are no systematically evaluated options for prevention of RABS in children. In general, the use of prolonged prophylactic antimicrobial therapy should be avoided and is not usually recommended for children with recurrent acute otitis media. However, when there are no recognizable predisposing conditions to remedy in children with RABS, prophylactic antimicrobial agents may be used for several months during the respiratory season. Enthusiasm for this strategy is tempered by concerns regarding the encouragement of bacterial resistance. Accordingly, prophylaxis should only be considered in carefully selected children whose infections have been thoroughly documented.

Influenza vaccine should be administered annually, and PCV-13 should be administered at the recommended ages for all children, including those with RABS. Intranasal steroids and nonsedating antihistamines can be helpful for children with allergic rhinitis, as can antireflux medications for those with gastroesophageal reflux disease. Children with anatomic abnormalities may require endoscopic surgery for removal of or reduction in ostiomeatal obstruction.

The pathogenesis of chronic sinusitis is poorly understood and appears to be multifactorial; however, many of the conditions associated with RABS...
have also been implicated in chronic sinusitis, and it is clear that there is an overlap between the 2 syndromes. In some cases, there may be episodes of acute bacterial sinusitis superimposed on a chronic sinusitis, warranting antimicrobial therapy to hasten resolution of the acute infection.

Complications of Acute Bacterial Sinusitis

Complications of acute bacterial sinusitis should be diagnosed when the patient develops signs or symptoms of orbital and/or central nervous system (intracranial) involvement. Rarely, complicated acute bacterial sinusitis can result in permanent blindness, other neurologic sequelae, or death if not treated promptly and appropriately. Orbital complications have been classified by Chandler et al. Intracranial complications include epidural or subdural abscess, brain abscess, venous thrombosis, and meningitis. Periorbital and intraorbital inflammation and infection are the most common complications of acute sinusitis and most often are secondary to acute ethmoiditis in otherwise healthy young children. These disorders are commonly classified in relation to the orbital septum; periorbital or preseptal inflammation involves only the eyelid, whereas postseptal (intraorbital) inflammation involves structures of the orbit. Mild cases of preseptal cellulitis (eyelid <50% closed) may be treated on an outpatient basis with appropriate oral antibiotic therapy (high-dose amoxicillin-clavulanate for comprehensive coverage) for acute bacterial sinusitis and daily follow-up until definite improvement is noted. If the patient does not improve within 24 to 48 hours or if the infection is progressive, it is appropriate to admit the patient to the hospital for antimicrobial therapy. Similarly, if proptosis, impaired visual acuity, or impaired and/or painful extraocular mobility is present on examination, the patient should be hospitalized, and a contrast-enhanced CT should be performed. Consultation with an otolaryngologist, an ophthalmologist, and an infectious disease expert is appropriate for guidance regarding the need for surgical intervention and the selection of antimicrobial agents.

Intracranial complications are most frequently encountered in previously healthy adolescent males with frontal sinusitis. In patients with altered mental status, severe headache, or Pott’s puffy tumor (osteomyelitis of the frontal bone), neurosurgical consultation should be obtained. A contrast-enhanced CT scan (preferably coronal thin cut) of the head, orbits, and sinuses is essential to confirm intracranial or intraorbital suppurative complications; in such cases, intravenous antibiotics should be started immediately. Alternatively, an MRI may also be desirable in some cases of intracranial abnormality. Appropriate antimicrobial therapy for intraorbital complications include vancomycin (to cover possible methicillin-resistant *S. aureus* or penicillin-resistant *S. pneumoniae*) and either ceftriaxone, ampicillin-sulbactam, or piperacillin-tazobactam. Given the polymicrobial nature of sinogenic abscesses, coverage for anaerobes (ie, metronidazole) should also be considered for intraorbital complications and should be started in all cases of intracranial complications if ceftriaxone is prescribed.

Patients with small orbital, subperiosteal, or epidural abscesses and minimal ocular and neurologic abnormalities may be managed with intravenous antibiotic treatment for 24 to 48 hours while performing frequent visual and mental status checks. In patients who develop progressive signs and symptoms, such as impaired visual acuity, ophthalmoplegia, elevated intraocular pressure (>20 mm), severe proptosis (>5 mm), altered mental status, headache, or vomiting, as well as those who fail to improve within 24 to 48 hours while receiving antibiotics, prompt surgical intervention and drainage of the abscess should be undertaken. Antibiotics can be tailored to the results of culture and sensitivity studies when they become available.

AREAS FOR FUTURE RESEARCH

Since the publication of the original guideline in 2001, only a small number of high-quality studies of the diagnosis and treatment of acute bacterial sinusitis in children have been published. Ironically, the number of published guidelines on the topic (5) exceeds the number of prospective,

<table>
<thead>
<tr>
<th>Initial Management</th>
<th>Worse in 72 Hours</th>
<th>Lack of Improvement in 72 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation</td>
<td>Initiate amoxicillin with or without clavulanate</td>
<td>Additional observation or initiate antibiotic based on shared decision-making</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>High-dose amoxicillin-clavulanate</td>
<td>Additional observation or high-dose amoxicillin-clavulanate based on shared decision-making</td>
</tr>
<tr>
<td>High-dose amoxicillin-clavulanate</td>
<td>Clindamycin* and cefixime OR linezolid and cefixime OR levofloxacin</td>
<td>Continued high-dose amoxicillin-clavulanate OR clindamycin* and cefixime OR linezolid and cefixime OR levofloxacin</td>
</tr>
</tbody>
</table>

*Clindamycin is recommended to cover penicillin-resistant *S. pneumoniae*. Some communities have high levels of clindamycin-resistant *S. pneumoniae*. In these communities, linezolid is preferred.
placebo-controlled clinical trials of either antibiotics or ancillary treatments of acute bacterial sinusitis. Thus, as was the case in 2001, there are scant data on which to base recommendations. Accordingly, areas for future research include the following:

Etiology

1. Reexamine the microbiology of acute sinusitis in children in the postpneumococcal conjugate vaccine era and determine the value of using newer polymerase chain reaction–based respiratory testing to document viral, bacterial, and polymicrobial disease.
2. Correlate cultures obtained from the middle meatus of the maxillary sinus of infected children with cultures obtained from the maxillary sinus by puncture of the antrum.
3. Conduct more and larger studies to more clearly define and correlate the clinical findings with the various available diagnostic criteria of acute bacterial sinusitis (eg, sinus aspiration and treatment outcome).
4. Develop noninvasive strategies to accurately diagnose acute bacterial sinusitis in children.
5. Develop imaging technology that differentiates bacterial infection from viral infection or allergic inflammation, preferably without radiation.

Treatment

1. Determine the optimal duration of antimicrobial therapy for children with acute bacterial sinusitis.
2. Evaluate a “wait-and-see prescription” strategy for children with persistent symptom presentation of acute sinusitis.
3. Determine the optimal antimicrobial agent for children with acute bacterial sinusitis, balancing the incentives of choosing narrow-spectrum agents against the known microbiology of the disease and resistance patterns of likely pathogens.
4. Determine the causes and treatment of subacute, recurrent acute, and chronic bacterial sinusitis.
5. Determine the efficacy of prophylaxis with antimicrobial agents to prevent RABS.
6. Determine the effects of bacterial resistance among *S pneumoniae*, *H influenzae*, and *M catarrhalis* on outcome of treatment with antibiotics by the performance of randomized, double-blind, placebo-controlled studies in well-defined populations of patients.
7. Determine the role of adjuvant therapies (antihistamines, nasal corticosteroids, mucolytics, decongestants, nasal irrigation, etc) in patients with acute bacterial sinusitis by the performance of prospective, randomized clinical trials.
8. Determine whether early treatment of acute bacterial sinusitis prevents orbital or central nervous system complications.
10. Develop new bacterial and viral vaccines to reduce the incidence of acute bacterial sinusitis.

REFERENCES

SUBCOMMITTEE ON ACUTE SINUSITIS

Ellen R. Wald, MD, FAAP

(K Chair, Pediatric Infectious Disease Physician; no financial conflicts; published research related to sinusitis)

Kimberly E. Applegate, MD, MS, FAAP

(Radiologist, AAP Section on Radiology; no conflicts)

Clay Bordley, MD, MPH, FAAP

(Pediatric Emergency and Hospitalist Medicine physician; no conflicts)

David H. Darrow, MD, FAAP

(Chair, Pediatric Infectious Disease Physician, AAP Committee on Infectious Disease: no conflicts)

S. Michael Marcy, MD, FAAP

(General Pediatrician with Infectious Disease Expertise, AAP Section on Infectious Diseases: no conflicts)

Nader Shaikh, MD, FAAP

(General Academic Pediatrician: no financial conflicts; published research related to sinusitis)

Michael J. Smith, MD, MSCE, FAAP

(Epidemiologist, Pediatric Infectious Disease Physician: research funding for vaccine clinical trials from Sanofi Pasteur and Novartis)

Paul V. Williams, MD, FAAP

(Allergist, AAP Section on Allergy, Asthma, and Immunology: no conflicts)

Stuart T. Weinberg, MD, FAAP

(PPI Informatician, General Academic Pediatrician: no conflicts)

Carrie E. Nelson, MD, MS

(Family Physician, American Academy of Family Physicians: employed by McKesson Health Solutions)

Richard M. Rosenfeld, MD, MPH, FAAP

(Otolaryngologist, AAP Section on Otolaryngology–Head and Neck Surgery, American Academy of Otolaryngology–Head and Neck Surgery: no financial conflicts; published research related to sinusitis)

CONSULTANT

Richard N. Shiffman, MD, FAAP

(Informatician, Guideline Methodologist, General Academic Pediatrician: no conflicts)

STAFF

Caryn Davidson, MA

37. McIntosh D, Mahadevan M. Failure of contrast enhanced computed tomography scans to identify an orbital abscess. The benefit of magnetic resonance imaging. J Laryngol Otol. 2008;122(6):639–640

68. Park MA, Koch CA, Klemawesch P, Joshi A, Li JT. Increased adverse drug reactions to cephalosporins in penicillin allergy patients with positive penicillin skin test. *Int Arch Allergy Immunol.* 2010;153(3):268–273

Clinical Practice Guideline for the Diagnosis and Management of Acute Bacterial Sinusitis in Children Aged 1 to 18 Years
Ellen R. Wald, Kimberly E. Applegate, Clay Bordley, David H. Darrow, Mary P. Glode, S. Michael Marcy, Carrie E. Nelson, Richard M. Rosenfeld, Nader Shaikh, Michael J. Smith, Paul V. Williams and Stuart T. Weinberg

Pediatrics 2013;132:e262
DOI: 10.1542/peds.2013-1071 originally published online June 24, 2013;
Clinical Practice Guideline for the Diagnosis and Management of Acute Bacterial Sinusitis in Children Aged 1 to 18 Years

Ellen R. Wald, Kimberly E. Applegate, Clay Bordley, David H. Darrow, Mary P. Glode, S. Michael Marcy, Carrie E. Nelson, Richard M. Rosenfeld, Nader Shaikh, Michael J. Smith, Paul V. Williams and Stuart T. Weinberg

Pediatrics 2013;132:e262
DOI: 10.1542/peds.2013-1071 originally published online June 24, 2013;

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/132/1/e262