Prevention and Management of Infants With Suspected or Proven Neonatal Sepsis

In 2010, the Centers for Disease Control and Prevention in collaboration with the American Academy of Family Physicians, American Academy of Pediatrics (AAP), American College of Nurse-Midwives, American College of Obstetricians and Gynecologists, and American Society for Microbiology published revised group B streptococcal (GBS) guidelines entitled “Prevention of perinatal group B streptococcal disease: revised guidelines from CDC 2010” in the Morbidity and Mortality Weekly Report (MMWR).1 The recommendations were endorsed by all the collaborating organizations including AAP after review by the Committee on Infectious Diseases (COID) and the Committee on Fetus and Newborn (COFN) and after AAP Board approval. In the report, a revised algorithm for “Secondary prevention of early-onset group B streptococcal disease” was included. This algorithm represented the expert opinions of the technical working group (based on current literature available at that time). In 2011, the COID and the COFN published a policy statement in Pediatrics that was in agreement with the 2010 GBS guidelines and included the same algorithm.2

In the spring of 2012, the COFN published a clinical report containing management guidelines entitled “Management of neonates with suspected or proven early-onset neonatal sepsis.”3 The 2012 COFN document includes guidance on laboratory evaluations and treatment duration, which were not addressed in the 2010 GBS prevention guidelines. The algorithms at the end of the COFN report differed from those in the 2010 guidelines published in the MMWR.1 The discordance in the algorithms prompted questions by the pediatric community as to which recommendations to follow.

The purpose of this commentary is to clarify AAP policy. Discordant algorithms for secondary prevention of GBS were published in 2 separate policy statements.2,3 This commentary includes the algorithm that has been approved as current AAP policy. Providing a single algorithm will avoid confusion and ensure that the guidelines achieve their desired effects.

The COFN and the COID strongly support the recommendations made in the 2010 prevention guidelines approved by the AAP and the other collaborating organizations (secondary prevention of GBS algorithm representing current AAP policy is attached in Fig 1). However, the COFN notes that in some situations, other approaches might be considered that differ from guidance provided in the 2010 prevention guidelines. The following recommendations include the recommendations from the 2010 MMWR publication and those made by the COFN:

1. Neonates who have signs of sepsis should receive broad-spectrum antimicrobial agents.
2. Healthy-appearing preterm and term infants born to women with suspected chorioamnionitis should receive a blood culture at

AUTHORS: Michael T. Brady, MD, and Richard A. Polin, MD

*Nationwide Children's Hospital, Columbus, Ohio, and †College of Physicians and Surgeons, Columbia University, New York, New York

KEY WORDS: neonatal sepsis, group B streptococcus, prevention, treatment

ABBREVIATIONS

AAP—American Academy of Pediatrics

CBC—complete blood cell

COFN—Committee on Fetus and Newborn

COID—Committee on Infectious Diseases

GBS—group B streptococcal

MMWR—Morbidity and Mortality Weekly Report

Opinions expressed in these commentaries are those of the authors and not necessarily those of the American Academy of Pediatrics or its Committees.

doi:10.1542/peds.2013-1310

Accepted for publication Apr 24, 2013

Address correspondence to Michael T. Brady, MD, 700 Children’s Dr, AB 7048, Columbus, OH 43205. E-mail: michael.brady@nationwidechildrens.org

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).

Copyright © 2013 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

FUNDING: No external funding.
The 2010 GBS prevention guidelines recommend a limited evaluation (blood culture and complete blood cell [CBC] count with differential at birth or 6 to 12 hours of age) and hospital observation for 48 hours. The COFN recommends hospital observation for 48 hours in this circumstance (without further testing or cultures). However, when close observation is not possible, the COFN recommends a laboratory evaluation.

4. For well-appearing infants <37 weeks' gestation whose mother did not have suspected chorioamnionitis, but who did have an indication for IAP and did not receive adequate prophylaxis, the 2010 GBS prevention guidelines recommend a limited evaluation (blood culture and CBC count) and hospital observation for 48 hours. The COFN also recommends a limited evaluation, but no blood culture unless antibiotics are started because of abnormal laboratory data.

5. The 2010 GBS prevention guidelines do not address the duration of antimicrobial therapy. The COFN makes recommendations for the duration of antimicrobial therapy based on the results of laboratory testing. Healthy-appearing infants without evidence of bacterial infection should receive broad-spectrum antimicrobial agents for no more than 48 hours. In small preterm infants, some may continue antibiotics for up to 72 hours while awaiting bacterial culture results.

Published data to support recommendations for prevention and management of newborn sepsis are limited. However, success of the GBS prevention guidelines provides evidence that reductions in early-onset GBS disease have been possible by the development of consensus guidelines with consistent evidence.
The COFN’s 2012 recommendations complement the 2010 GBS prevention guidelines by providing additional treatment information that is not addressed in the 2010 prevention guidelines. These should provide clinicians with guidance for optimal duration of antimicrobial therapy and reduce excess exposure to broad-spectrum antimicrobial therapy in healthy-appearing uninfected infants who had empirical antimicrobial therapy initiated.

REFERENCES


CANINE LICKS OF LOVE SHAPE HUMAN BIOME: There's nothing like coming home at the end of the day to find man's best friend there to greet you. Dogs provide unconditional love and affection, and it appears that their welcoming kisses may do more than just strengthen the relationship between human and animal. As reported on an NPR health news blog (Shots: April 18, 2013), a recent study indicates that dog owners share a common bond—the bacteria on their skin. In their investigation of 159 individuals living in 17 households, researchers found that dog owners living in separate households share a common bacterial linkage through their canine companions. Actinobacteria and Betaproteobacteria found in soil and on dogs' tongues, respectively, were present on dog owners' skin in greater amounts than in those who did not own dogs. Unsurprisingly, the type and amount of bacteria on an owner's skin were most closely related to that of their own pooch. This effect was only observed in the adult dog owner population (18-59 years of age); the presence of other household pets, including cats, had no significant effect on owner microbiota. While our canine furry friends may shape our skin environment, additional research is necessary to better define how these bacteria influence our health.

Noted by Leah H. Carr, BS, MS-IV
Prevention and Management of Infants With Suspected or Proven Neonatal Sepsis

Michael T. Brady and Richard A. Polin

*Pediatrics* 2013;132;166

DOI: 10.1542/peds.2013-1310 originally published online June 10, 2013;

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://pediatrics.aappublications.org/content/132/1/166