Common Syndromes of Orthostatic Intolerance

The autonomic nervous system, adequate blood volume, and intact skeletal and respiratory muscle pumps are essential components for rapid cardiovascular adjustments to upright posture (orthostasis). Patients lacking sufficient blood volume or having defective sympathetic adrenergic vasoconstriction develop orthostatic hypotension (OH), prohibiting effective upright activities. OH is one form of orthostatic intolerance (OI) defined by signs, such as hypotension, and symptoms, such as lightheadedness, that occur when upright and are relieved by recumbence. Mild OI is commonly experienced during intercurrent illnesses and when standing up rapidly. The latter is denoted “initial OH” and represents a normal cardiovascular adjustment to the blood volume shifts during standing. Some people experience episodic acute OI, such as postural vasovagal syncope (fainting), or chronic OI, such as postural tachycardia syndrome, which can significantly reduce quality of life. The lifetime incidence of ≥1 fainting episodes is ~40%. For the most part, these episodes are benign and self-limited, although frequent syncope episodes can be debilitating, and injury may occur from sudden falls. In this article, mechanisms for OI having components of adrenergic hypofunction, adrenergic hyperfunction, hyperpnea, and regional blood volume redistribution are discussed. Therapeutic strategies to cope with OI are proposed. Pediatrics 2013;131:968–980

AUTHOR: Julian M. Stewart, MD, PhD

Departments of Pediatrics, Physiology, and Medicine, The Maria Fareri Children’s Hospital and New York Medical College, Valhalla, New York

KEY WORDS
syncope, postural tachycardia syndrome, orthostatic hypotension, autonomic nervous system, hypocapnia

ABBREVIATIONS
ANS—autonomic nervous system
BP—blood pressure
CBF—cerebral blood flow
CBFv—cerebral blood flow velocity
CNS—central nervous system
CO—cardiac output
HR—heart rate
IOH—initial orthostatic hypotension
NET—norepinephrine transporter
NOH—neurogenic orthostatic hypotension
OH—orthostatic hypotension
OI—orthostatic intolerance
POTS—postural tachycardia syndrome
VVS—vasovagal syncope

Dr Stewart has made a substantial contribution to conception and design, acquisition of data, analysis and interpretation of data, drafting the article and revising it critically for important intellectual content; he gave final approval of the version to be published.

www.pediatrics.org/cgi/doi/10.1542/peds.2012-2610
doi:10.1542/peds.2012-2610

Accepted for publication Jan 3, 2013

Address correspondence to Julian M. Stewart, MD, PhD, New York Medical College, Center for Hypotension, 19 Bradhurst Ave, Suite 1800S, Hawthorne, NY 10532. E-mail: julian_stewart@nymc.edu

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).

Copyright © 2013 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The author has indicated he has no financial relationships relevant to this article to disclose.

FUNDING: This work was supported by the National Heart, Lung, and Blood Institute (grants RO1-HL074873 and RO1-HL087803). Funded by the National Institutes of Health (NIH).
Upright posture (orthostasis) stresses regulatory capabilities of the circulatory system including an intact heart, intact vascular structure and function, adequate blood volume, and intact physical pumps comprising the skeletal muscle pump (leg muscles that compress leg veins) and the respiratory-abdominal muscle pump, which enhances systemic venous return during respiration. Upright stance causes dependent venous pooling. Muscle pumps propel blood back to the heart when upright and during exercise. Enabling the skeletal muscle pump forms an important class of physical countermeasures against orthostatic intolerance (OI). Apart from muscle pumps, rapid orthostatic circulatory adjustments depend on the autonomic nervous system (ANS) comprising sympathetic and parasympathetic arms forming a framework for heart rate (HR) and blood pressure (BP) stability. The myogenic response and flow-dependent mechanisms primarily act to ensure tissue-level perfusion and autoregulation. The sympathetic arm acts through its primary vascular neurotransmitter norepinephrine and cotransmitters neuropeptide Y and ATP to produce arterial vasoconstriction and venoconstriction, increase cardiac contractility and HR, stimulate adrenal epinephrine release, and control the neuroendocrine and vascular function of the kidney and long-term BP control. The parasympathetic arm, via vagal nerve efferents, contributes most to HR changes at rates less than the intrinsic rate. Recent work indicates strong vagal influences on sympathoexcitation and important effects on nitroglyceric (nitric oxide containing nerves) vasodilation of the large cerebral arteries. Endocrine and local systems (eg, nitric oxide, local angiotensin) impact the vascular milieu but are slower to develop, often acting to modulate or set tonic activity of the ANS. Autonomic control of HR and BP during orthostasis is provided by subsystems designated “baroreflexes” (pressure reflexes), loosely grouped as arterial and cardiopulmonary baroreflexes, which maintain BP under changing conditions such as orthostasis.

THE NORMAL ORTHOSTATIC RESPONSE AND INITIAL ORTHOSTATIC HYPOTENSION

When supine, blood volume within the central thoracic vasculature is relatively large, although a disproportionate amount (25%–30%) of blood is stored within the splanchnic venous reservoir. Standing transfers 500 mL of central blood caudally, further increasing the volume of the splanchnic pool and filling veins of the lower extremities. An initial period of instability follows, denoted initial orthostatic hypotension during which BP can decrease by ≥30%, reaching its nadir at 10 to 20 seconds after standing. Reflex tachycardia occurs. BP is restored within 30 to 60 seconds. IOH results from the normal delay of arterial baroreflex detection and response to gravitational blood volume redistribution. Lightheadedness, postural instability, and occasionally brief loss of consciousness occur and are relieved by recumbency, making IOH a form of OI. Thereafter, HR decreases but remains elevated compared with supine, and BP is restored by arterial vasoconstriction, elastic recoil of venous blood in dependent veins, and active vasoconstriction in splanchnic veins.

After IOH recovery, upright blood volume slowly decreases because of microvascular filtration. Decreased venous return decreases central blood volume and cardiac output (CO) by 20% despite baroreflex mediated vasoconstriction, increased cardiac contractility, and increased HR. Cerebral blood flow velocity (CBFv) decreases by 3% to 12% partly because of reduced cerebral perfusion pressure by 20 mm Hg. Cerebral autoregulation (unchanged cerebral blood flow [CBF] despite changing BP) is blunted during orthostasis. Unless the muscle pump is evoked, standing still places us at risk for decreased CO and CBF.

FIGURE 1

IOH upon standing. There is a short-lived decrease in BP (upper panel) and increase in HR (lower panel). The fall in BP is resolved within ~20 seconds. The patient experienced transient lightheadedness.
Orthostasis means standing up. OI can be defined by the inability to tolerate the upright posture because of signs and symptoms relieved by lying down. If symptoms initiate while supine, then there is no OI. Transient OI is commonly experienced during dehydration or infectious disease. Typical signs and symptoms include loss of consciousness or lesser cognitive deficits (memory loss, decreased reasoning and concentration), visual difficulties, light-headedness, headache, fatigue, either increases (hypertension) or decreases (hypotension) of BP, weakness, nausea and abdominal pain, sweating, tremulousness, and exercise intolerance. Unless one is in harm’s way (eg, standing on a cliff), OI is not lethal. Some OI findings, such as nausea and sweating, pertain directly to autonomic activation. However, loss of consciousness, severe lightheadedness, and neurocognitive loss relate to central nervous system (CNS) dysfunction and oblige recumbence. CNS symptoms are produced by altered brain blood flow perhaps involving the brainstem. CBfv is shown in Fig 2 for 2 common forms of OI, vasovagal syncope (VVS) and postural tachycardia syndrome (POTS). Cerebral autoregulation may be compromised, as in POTS and VVS. CBfv may be reduced by hyperventilation and hypocapnic cerebral vasconstriction. Involuntary postural hyperventilation, mostly hyperpnea, is observed in all VVS patients and 50% of POTS patients in my laboratory. Trigeminal, sympathetic, or parasympathetic nerve activity may also affect orthostatic CBfv.

ORTHOSTATIC STRESS TESTING AND TOOLS TO STUDY OI

Perhaps the best “test” is medical history, which can often diagnose OI based on symptoms relieved by recumbence. Orthostatic stress tests supplement history by evoking OI in the laboratory. The predictive value of laboratory-induced OI for real-world OI is unclear, at least for syncope: in >40-year-old adults, tilt tests do not predict VVS. Controlled studies have not been performed in younger patients. There is no reference standard for orthostatic testing. Standing without movement may be the most physiologic orthostatic stress but is complicated by muscle pump activity. Therefore, tilt tables are used to restrict patient movement while passively placing them upright. A recent adult study of POTS compared the diagnostic accuracy of standing for 10 minutes with 60° upright tilt for >10 minutes. Results showed that standing after being supine for 1 hour was at least as good as 10-minute tilt; longer tilts introduced excessive numbers of false positives. Standing HR and BP measurements were taken at 1, 3, 5, and 10 minutes. Thus, standing tests for POTS requires previous supine rest. In our hands, >20 minutes is needed to reach fluid equilibrium. More dramatic results can be obtained by lower body negative pressure, which best simulates hemorrhage but duplicates many OI findings. A combination of lower body negative pressure with upright tilt can evoke OI (usually syncope) in everyone. Tests always include measurements of BP, HR, and heart rhythm and are supplemented in research laboratories by measurements of beat-to-beat CO, CBfv, regional blood flow, blood volume, sympathetic nerve activity, synaptic norepinephrine spillover, and vascular biopsy.

TYPES OF OH

IOH

Fulfills criteria for OI and has been previously discussed. Treatment options are shown in Table 1.

Orthostatic Hypotension

True orthostatic hypotension (OH) was defined by consensus in 2011 as sustained reduction of systolic BP >20 mm Hg or of diastolic BP >10 mm Hg within 3 minutes of standing.
or head-up tilt. OH is illustrated in Fig 3. A simple test for OH is to observe BP and HR once a minute during a 3-minute stand.

Nonneurogenic OH is relatively common in the young. It can be caused by drugs or hypovolemia (eg, dehydration, hemorrhage). It is by far the most common form of OH in the young. There is no failure of autonomic function but rather incomplete ANS compensation for excessive nonautonomic stressors.

Neurogenic OH (NOH) signifies serious autonomic illness. It is identified with true autonomic vasoconstrictor failure due to the inadequate release of noradrenaline from sympathetic nerves. It is by far the most common form of OH in the young. There is no failure of autonomic function but rather incomplete ANS compensation for excessive nonautonomic stressors.

POTS

POTS is defined by chronic day-to-day symptoms of OI plus excessive increase in HR when upright (Fig 4). Hypotension is not in the definition. Sinus rhythm is required. POTS is identified with chronic OI: there must be daily symptoms, and the illness must be present for several months. HR normally increases with standing. Excessive tachycardia was defined in adults by a sustained increase >30 beats per minute or to a HR >120 beats per minute during a 10-minute tilt. Concurrent OI symptoms are necessary. Standardized standing tests are established in adults. Larger HR increments are observed in healthy young people; the HR increment for POTS has increased to >40 beats per minute in children and teens aged 8 to 19 years. The number of POTS patients within the United States was estimated at >500,000 in 1999. Current estimates are much higher. However, the actual prevalence of POTS is unknown.

What Causes POTS?

POTS is caused by alterations of the autonomic nervous system, although mild to moderate all-cause hypovolemia mimics POTS.

Vagal Withdrawal and the Sinus Node

In some mildly ill individuals, POTS is related to loss of parasympathetic slowing of the heart with few peripheral circulatory abnormalities. Upright HRs rarely exceed 120 beats per minute. Often agents that increase cardiac parasympathetic activity such as β-blockers, cardiac glycosides, acetylcholinesterase inhibitors (pyridostigmine), or ivabradine (not US Food and Drug Administration approved) relieve symptoms.

Others may have excessive β-adrenergic sensitivity of the sinus node. This condition is denoted “inappropriate sinus tachycardia” and is regarded as distinct from POTS but less common. Supine HRs >100 beats per minute are observed, symptoms are less severe than in POTS, and β-blocker therapy can be efficacious.

Neuropathic POTS and Hyperadrenergic POTS

The remainder of patients are often partitioned among neuropathic POTS, in which partial dysautonomic adrenergic denervation occurs, and hyperadrenergic POTS, in which sympathetic overactivity prevails.

Neuropathic POTS

As originally described, decreased adrenergic vasoconstriction in the legs causes decreased norepinephrine spillover, vasodilation, and increased blood flow even supine. When upright, redistributive central hypovolemia caused by leg blood pooling leads to reflex tachycardia. In another neuropathic variant, decreased adrenergic vasoconstriction and redistribution of central blood to the splanchnic vasculature causes reflex tachycardia. Intense leg vasoconstriction produces acrocyanosis. Autonomic autoimmune neuropathy, presenting as POTS, causes similar reflex tachycardia. Central hypovolemia produces hyperpnea and hypocapnia in 50% of our patients. Treatment with vasoconstrictors (eg, midodrine) and pyridostigmine can help.

Hyperadrenergic POTS

The adrenergic synapse can be altered at presynaptic or postsynaptic levels. Presynaptic abnormalities include increased sympathetic nerve activity even when supine. Although this has been reported, the finding is not consistent.

Increased synaptic norepinephrine is observed in the norepinephrine transporter (NET) deficiency heterozygote.
and in more prevalent epigenetic NET downregulation33. Presynaptic and postsynaptic adrenergic activity may be enhanced by local chemical milieu, including angiotensin-II excess caused by angiotensin converting enzyme–253 deficit and nitric oxide deficiency, a hyperadrenergic variant with tachycardia, pallor, vasoconstriction, and absolute hypovolemia. Angiotensin (type 1) receptor blockers have shown benefit. \textbeta-blockers may also help.

Distinguishing Among POTS Variants: A Matter of Opinion

Distinguishing among POTS variants may be difficult for the pediatrician (and for the OI expert) despite apparent straightforward differences. Some would say that POTS with increased upright BP is hyperadrenergic; others would say that increased plasma catecholamines (or better, increased norepinephrine spillover) is required. Excessive orthostatic BP is a matter for consensus because both systolic and diastolic BP normally increase upon standing; how much is too much is unclear. As a heuristic, POTS patients with high supine HR, who are cool to touch and are pasty white in appearance when supine, often have hyperadrenergic POTS. Standing HR is elevated to the 130 to 180 range during quiet standing indicating hyperadrenergic drive; vagal withdrawal alone increases HR to the 100 to 120 range. Those with upright HR <120 beats per minute are more likely neuropathic. Recent (unpublished) work with sympathetic nerve recordings have demonstrated normal sympathetic activity when supine and supranormal activity when upright. This supports adrenergic enhancement (NET deficiency, angiotensin-II excess) in patients with hyperadrenergic POTS. Confusing matters further, neuropathic patients can have increased upright catecholamines even though spillover is decreased in the lower extremities46.

Gravitational Deconditioning—Caveat Bedrest!

One confounding and alarming issue is the tendency for POTS patients to bedrest. Prolonged bedrest emulates microgravity and has deleterious effects54 including OI,55 profound reductions in blood volume and cardiac size, redistribution of blood, osteoporosis, skeletal muscle pump atrophy, and more.56 Vasovagal withdrawal alone increases HR to the 100 to 120 range. Bedrest causes a self-perpetuating state of OI, which can emulate or intensify POTS. It is paramount for POTS patient to leave bed and recondition. Well-structured exercise protocols are essential and must accommodate patients who start off bedrested.57 Reconditioning invariably improves patient well-being. Recent work supports the idea that POTS patients are also exercise deconditioned compared with matched volunteers.58 Although exercise deconditioning may or may not be causal in POTS, it is clear that exercise reconditioning is beneficial and should be advocated for all POTS patients.
What Are POTS Patients Like?

Quality of life can be severely compromised. A few features are common to all variants:

- **Females predominate 3:1.** Onset is usually from menarche to menopause.
- The onset often follows a flu-like illness. Illness may occasionally represent a self-limited autoimmune disease. The role of immune and epigenetic factors remains ill defined.
- Some patients have an insidious onset over years, sometimes with a past history of VVS.
- Some patients have joint hypermobility syndromes. Causality is unclear.
- While supine or seated, some patients appear well, others pasty pale.
- Patients are unable to remain upright for long periods of time. Symptoms are similar to the syndrome of VVS.
- BP is typically well maintained and may increase when upright in hyperadrenergic individuals. Prolonged laboratory tilt may provoke VVS.
- Cognitive deficits and exercise intolerance are prominent complaints.
- Gastrointestinal symptoms include dysmotility issues.
- Young women may be underweight, and POTS must be differentiated from eating disorders, which can produce POTS-like OI in early stages.
- Environmental heat reroutes blood to the skin and makes patients worse. Air-conditioning may be required and standing hot showers untenable.
- Schoolwork may be impaired. Home schooling is common. Colleges are often accommodating because of adaptive scheduling and improved logistics.

- A wide variety of pharmacologic therapies are recommended with variable effects including β blockade, α-1 agonists (midodrine), acetylcholinesterase inhibitors (pyridostigmine), and fludrocortisone acetate (Florinef). Treatment options are shown in Table 1.
- Water ingestion is a useful, short-lived palliation. Effects are through TRPV4 receptors in the splanchnic vasculature. Sixteen ounces of water and waiting 20 to 30 minutes yields benefit for hours.
- Salt and water loading can help but often require Spartan efforts.
- Even when the cause is known (eg, NET deficiency) pharmacologic treatment is rarely curative. Most young people improve over time. In some, POTS persists.

What Causes Syncope?

The most common cause for syncope is hypotension. Conceivably, a transient ischemic attack could cause syncope, although this is infrequent. A separate form of cerebral hypoperfusion without hypotension known as cerebral syncope may produce syncope as can hypoxia from high-altitude exposure. The VVS response can be evoked in most people by sufficiently large or-thostatic stressors or by hemorrhage. VVS may represent an evolutionary strategy to cope with excessive blood loss.

Orthostatic Hypotension Can Cause Syncope

Syncope may be due to OH. This is ruled out by the 3-minute standing test.

Is It Cardiogenic or Reflex Syncope? What to Do With a First Faint

If syncope is not caused by OH syncope is partitioned among cardiogenic syncope, frequently due to cardiac arrhythmia or other cardiac disease and reflex or neurally mediated syncope. Cardiogenic syncope can be life-threatening and has a poor prognosis unless specific steps are taken to treat cardiac pathophysiology. Cardiogenic syncope is not OI because recumbency does not specifically produce improvement. Reflex syncope has a good prognosis. Reflex syncope includes VVS and situational syncope, including carotid sinus syncope, essentially unknown in pediatrics; deglutition, defecation, micturition, and cough syncope rarely observed in the young; and hair grooming and adolescent stretch syncope, variants that are particular to adolescence. Fainting during exercise raises a red flag for cardiogenic syncope, and sport activity is curtailed until cardiac evaluation is complete. Nevertheless, the most common cause of exercise-related syncope in the young is VVS. Cardiogenic

STATE OF THE ART REVIEW

PEDIATRICS Volume 131, Number 5, May 2013
syncope, although not usually posturally related, cannot be automatically dismissed during a first faint. Therefore, the first and consequent episodes before cardiovascular evaluation should be treated as urgent. If fainting is subsequently found to be noncardiogenic, then urgency is reduced and simple maneuvers (discussed later) often suffice to deal acutely with the circumstance. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram. The initial evaluation of a patient presenting with syncope comprises a detailed history, physical examination, including orthostatic BP measurements, and an electrocardiogram to look for QT prolongation, premeasurements, and an electrocardiogram.

Postural Syncope or Emotional Syncope

Postural syncope and emotional stress syncope (eg, “blood phobia”) comprise VVS, which is the largest subgroup within reflex syncope. Regional or systemwide loss of sympathetic adrenergic vasoconstriction occurs in all VVS. Loss of consciousness is most often preceded by a prodrome of OI symptoms, particularly lightheadedness, nausea, sweating, weakness, and visual disturbance (eg, “blackout,” scotomata). VVS patients often have CNS residua after recovery including headache, disorientation, occasional amnesia for the episode, and severe fatigue. The “postdrome” is more characteristic of VVS than of (brief) cardiogenic syncope. It is best to rest for the remainder of the day because subsequent VVS can be most easily induced on the day of faint. Until recently, VVS was thought to be caused by C-fiber afferents activated by a hypercontractile underfilled heart akin to the Bezold-Jarisch chemoreflex. There is evidence to the contrary. Thus, any such stimulus could be short-lived because baroreceptors would be immediately unloaded, few afferent nerves were excited in the original hemorrhaged cat model; VVS can occur in a transplant recipient with denervated ventricles; and the heart before syncope is neither empty nor hypercontractile. To date, the pathophysiology of simple faint remains elusive.

Postural VVS

Postural syncope is acute OI. Approximately two-thirds of patients are female. Teenage boys tend to be tall, thin, and rapidly growing. The most common variant of postural faint occurs episodically in otherwise healthy young patients. Between episodes most VVS fainters are well. However, at times episodes of syncope or presyncope (aborted syncope) may become chronic, as in some patients with the chronic fatigue syndrome. In classic form, postural faint often comprises 3 upright stages (Fig 5), which closely emulate the circulatory changes that occur during progressive hemorrhage.

Stage 1. After IOH, hemodynamic equilibrium is reestablished. BP stabilizes, and HR increases. Restabilization distinguishes VVS from true OI in which BP falls early and remains low. BP and sympathetic activity are often oscillatory with a 10-second period. Sympathetic activity, compensatory vasoconstriction, and HR are typically increased compared with healthy subjects. Oscillations, often referred to as Mayer waves, represent the delay between sensing and compensating for a change in BP. This requires intact autonomic reflexes, which are enhanced during central blood volume unloading during standing.

Stage 2. Thereafter, BP slowly declines as HR reflexively increases. The decrease in BP is attributed to a reduction in CO despite increased vasoconstriction and sympathetic activity. Prodomal OI symptoms (presyncope) often begin at this point. When combined with tachycardia, a diagnosis of POTS may be entertained in the laboratory setting. However, the HR is rarely >120 beats per minute, and a history of episodic faints interspersed with periods free of OI symptoms distinguishes postural syncope from POTS, in which OI is chronic. Medical history is paramount. Hyperpnea and hypocapnia are also observed and contribute to reduced CBFv.

Recent explanations offered for the early phases of postural VVS include reduced tyrosine hydroxylase and noradrenaline synthesis in patients with low resting BP, excess NET, or selective deficit of splanchic blood vessel vasoconstriction. Postural VVS is uncommon in patients with vasoconstricted hyperadrenergic POTS. Most POTS patients have day-to-day symptoms but do not faint, whereas most fainters faint episodically but do not have daily symptoms. This distinction
has blurred over time; some POTS patients have fainted, typically not concurrently with POTS, and some fainters have daily symptoms that are recognizably presyncopal. Nevertheless, loss of consciousness in POTS is relatively uncommon outside of the laboratory.

Stage 3. Brain blood flow, vasoconstriction, BP, and HR fall precipitously, in that order, causing loss of consciousness. Recent data suggest loss of cardiovagal and sympathetic baroreflex integrity and loss of cerebral autoregulation with entrainment by hyperpnea driven pulmonary reflexes. In some patients, an abrupt fall in BP and HR is absent (no stage 3). Instead, BP falls steadily while HR continues to rise. This is often called vasodepressor syncope, which in our experience is caused by decreased peripheral resistance and maintained CO. In still other patients, the slow fall in BP is abbreviated or absent (no stage 2, Fig 6) giving rise to convulsive syncope. Episodes occur abruptly, without warning (no prodrome) and in association with asystole or severe bradycardia. Brief, clonic jerks occur with convulsive syncope but generalized tonic-clonic seizures, typical of epilepsy, are uncommon. EEG shows slowing rather than spikes and findings resolve once supine. Asystole also occurs with phobic VVS. Recently, studies of adults aged >40 years show improvement in asystolic or severely bradycardic VVS with cardiac pacing. Other forms of VVS do not. There is no controlled data for the pediatric age group. In adults, tilt table induced asystole is unrelated to real-world asystole in older patients; this has not been ascertained in younger patients.

How Can VVS Be Treated (Table 1)?

- VVS is not deadly unless one is in harm’s way.
- To date, no single pharmacologic intervention has proven effective above the placebo effect in large clinical trials. Placebo exerts 30% to 40% benefit in these studies. Treatment options are shown in Table 1.
- Iron and even ferritin deficiency aggravates VVS.
- Trained athletes have increased risk of VVS compared with untrained persons.
- Salt and water supplementation can be helpful, but a large amount of salt is needed.

FIGURE 5
A representative VVS patient’s data during a tilt test. HR (top panel) increases until late into the course when it falls abruptly. Mean arterial pressure (MAP, bottom panel) initially stabilizes, then slowly decreases, and finally falls abruptly along with HR. SNA, sympathetic nervous activity; TPR, total peripheral resistance.

FIGURE 6
Asystolic postural VVS during a tilt test. HR (electrocardiogram, top panel) rapidly transits to asystole from a preceding sinus tachycardia. BP (bottom panel) falls in concert. There was no prodrome, although careful scrutiny shows a small decrease in BP before asystole supervenes.
TABLE 1: Treatment Options

<table>
<thead>
<tr>
<th>Orthostatic Syndrome</th>
<th>Defect/pathophysiology</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial OH</td>
<td>Rapid redistribution of blood to dependent body</td>
<td>Physical counter-maneuvers: sit down, isometric exercise (exercise pressor reflex) Infrequently supportive medication such as midodrine or fludrocortisone</td>
</tr>
<tr>
<td>Neurogenic OH</td>
<td>Systemically defective or absent adrenergic vasoconstriction; autonomic failure frequent parasympathetic dysfunction</td>
<td>Physical counter-maneuvers: lie down, sit down, squat, clench buttocks, leg crossing, support garment Droxidopa,118,119 salt and water loading, fludrocortisone, midodrine, atomoxetine + yohimbine; if secondary (eg, diabetes) treat underlying disorder Rapid water ingestion palliation</td>
</tr>
<tr>
<td>Nonneurogenic OH</td>
<td>Loss of blood volume, vasodilator drugs</td>
<td>Correct problem</td>
</tr>
<tr>
<td>Neuropathic POTS</td>
<td>Loss of regional vasoconstrictive ability</td>
<td>Physical counter-maneuvers, salt and water loading, midodrine, Mestinon, exercise Rapid water ingestion palliation</td>
</tr>
<tr>
<td>Hyperadrenergic POTS</td>
<td>Adrenergic potentiation</td>
<td>Physical counter-maneuvers β-blockers, AT1RB (angiotensin-II type 1 receptor blocker), ivabradine? fludrocortisone, exercise</td>
</tr>
<tr>
<td>Postural VVA</td>
<td>Loss of regional vasoconstrictive ability</td>
<td>Physical counter-maneuvers</td>
</tr>
<tr>
<td>Postural VVS</td>
<td>? Acute reversible baroreflex dysfunction</td>
<td>Salt and water Acute water ingestion Selective serotonin reuptake inhibitor; Midodrine Rapid water ingestion palliation</td>
</tr>
</tbody>
</table>

Coma. VVS is <2 minutes of total loss of consciousness, as a matter of consensus. Rarely, fainting promotes an underlying seizure disorder via cerebral ischemia.

- Very frequent or extremely prolonged syncope can point to psychogenic syncope or conversion responses. These are easily distinguished from true syncope in the laboratory because there is no hypotension or reduced CBF. However, attacks may be real to the patient. Some patients may have had bona fide VVS interspersed with more frequent psychogenic episodes as learned or conditioned responses. One school of thought suggests that such patients actually experience the symptoms of true VVS without the signs.

Postural Hyperpnea

Standing causes an increase in tidal volume, which is accentuated by increased central blood volume unloading.114 Marked involuntary hyperpneic hypocapnia precedes VVS in association with hypotension and in 50% of POTS patients without hypotension25,26,115 and reduces CBF. CO₂ administration relieves hyperventilation, but paper bag rebreathing promotes hypoxia.116 Postural hyperpnea occurs without POTS where it has been regarded as part of a psychogenic hyperventilation syndrome.117 In our hands, postural hyperpnea occurs during normoxic aerobic physical activities, particularly in athletic young women in whom it can be associated with variable changes in BP, increased HR, vasoconstriction, sympathetic activation, and decreased CO₂, CO₂ and CBF as a result of hypocapnia. It is provoked by upright tilt and relieved by administering CO₂. Hypocapnia, sympathetic activation, and anxiety occur in order. The patient experiences marked dyspnea, chest pain, limb tingling, and numbness. Cardiopulmonary evaluations are normal.

SUMMARY

- OI is defined by symptoms and signs when upright relieved by recumbence.
- OI is a form of OI, but neurogenic OH is rare in childhood
- Initial OH is a common form of OI in the young.
- Postural tachycardia syndrome is a form of chronic OI that can result from a partial denervated circulatory system, a hyperadrenergic state, or chronic bed rest.
- It is essential to distinguish reflex syncope from cardiogenic syncope.
- Postural VVS is the most common form of OI, occurring ≥1 times in 40% of the populace throughout life. The most common age of onset is age 15 years.
- Physical countermeasures can defend against OI. Lying down aborts VVS. Do not constrain a VVS patient in the upright position.
- Postural hyperpnea may be a separate OI syndrome distinct from anxiety disorders.

FUTURE RESEARCH

OI is common at all ages. Neither VVS nor POTS is completely understood in terms of molecular and genetic/epigenetic mechanisms. However, progress has been made recently in the study of neurovascular signaling molecules and in potential related genetic and epigenetic disorders. In addition to determining basic mechanisms, it will be important to define physiologic correlates of common symptoms, including postural lightheadedness, exercise intolerance, and memory and concentration problems when upright.
REFERENCES

11. Brack KE, Coote JH, Ng GA. Vagus nerve stimulation inhibits the increase in Ca2+ transient and left ventricular force caused by sympathetic nerve stimulation but has no direct effects alone—epicardial Ca2+ fluorescence studies using fura-2 AM in the isolated innervated beating rabbit heart. Exp Physiol. 2010;95(1):80–92

RIDING INTO OLDER AGE: A good friend of mine loves to ride his classic Harley-Davidson motorcycle. Each weekend, as long as the weather is nice, he and his wife cruise the back roads of Vermont. I am always a bit mystified by his passion as he tends to see the children who have been most seriously injured in motor vehicle, snowboarding, or other traumatic accidents. Now I have a new concern. As reported in The New York Times (Safe Travels: February 8, 2013), older motorcycle riders have a much higher risk of accidents than younger riders and my friend is 60 years old. Researchers examined data from the National Electronic Injury Surveillance System-All Injury Program to assess emergency department-treated injuries resulting from motorcycle crashes between the years 2001 and 2008. The frequency, types, and severity of injuries among those aged 20–39 years, 40–59 years, and 60+ years were compared. While during this time span, the number of injuries increased in all groups, the greatest rate of increase occurred in adults 60 years of age. Adults 40-59 years had twice and adults 60 years had three times the rate of hospitalization as adults 20-39 years of age. Moreover, middle-age and older adults were more likely to have severe injuries, such as fractures and internal organ damage including brain damage, than younger adults. Why adult riders are more accident prone is not known. Possibilities include a decline in vision and reaction time or that older riders tend to ride bigger motorcycles which may be harder to keep upright. The increased risk of severe injury may simply be due to a normal aging process; bones are more brittle and there is less muscle mass. With more than 25% of all adults over the age of 50 riding motorcycles, the implications are enormous. As for my friend, he is fit and cautious but I still tell him to keep it slow and steady.

Noted by WVR, MD
Common Syndromes of Orthostatic Intolerance
Julian M. Stewart

Pediatrics 2013;131;968; originally published online April 8, 2013;
DOI: 10.1542/peds.2012-2610

Updated Information & Services
including high resolution figures, can be found at:
/content/131/5/968.full.html

References
This article cites 116 articles, 59 of which can be accessed free at:
/content/131/5/968.full.html#ref-list-1

Citations
This article has been cited by 6 HighWire-hosted articles:
/content/131/5/968.full.html#related-urls

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Hematology/Oncology
/cgi/collection/hematology:oncology_sub
Cardiology
/cgi/collection/cardiology_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2013 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.
Common Syndromes of Orthostatic Intolerance
Julian M. Stewart

Pediatrics 2013;131:968; originally published online April 8, 2013;
DOI: 10.1542/peds.2012-2610

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/131/5/968.full.html