POLICY STATEMENT

Electronic Prescribing in Pediatrics: Toward Safer and More Effective Medication Management

abstract

This policy statement identifies the potential value of electronic prescribing (e-prescribing) systems in improving quality and reducing harm in pediatric health care. On the basis of limited but positive pediatric data and on the basis of federal statutes that provide incentives for the use of e-prescribing systems, the American Academy of Pediatrics recommends the adoption of e-prescribing systems with pediatric functionality. The American Academy of Pediatrics also recommends a set of functions that technology vendors should provide when e-prescribing systems are used in environments in which children receive care. Pediatrics 2013;131:824–826

BACKGROUND

The American Academy of Pediatrics (AAP) is committed to providing the best and safest health care system possible for children.

Medication prescribing or ordering in pediatrics is an error-prone process that can lead to adverse medication events and patient harm.1,2 Electronic prescribing (e-prescribing) is widely recognized as a component of the care process that improves quality and reduces costs by facilitating handoffs, improving clinical decision-making, and potentially improving medication adherence.

NEW INFORMATION

Prescribing error rates in children were estimated to be between 5% and 27% in a recent systematic review.3 Prescribing errors are most prevalent with antibiotic agents but may occur even with medications that do not require weight-based dosing.4 Medication errors in children may lead to more severe complications because of narrow therapeutic profiles and the inability of some children to communicate adverse effects. Many existing e-prescribing systems are not well designed for use in pediatric patients and lack the required features outlined in this statement. Parental health and English literacy have been shown to play important roles in the correct medication administration in children.5,6

From a legislative viewpoint, the past decade has been an active one for the national medication-prescribing landscape. In particular, 2 major statutes specifically addressed the goal of 100% adoption of e-prescribing through both time-dependent incentives and penalties.
E-prescribing systems can improve the quality and safety of medication administration by reducing preventable adverse drug events,7–9 reducing dosing errors,10 improving communication11,12 avoiding adverse effects,13,14 and improving efficiency.15 The benefits of e-prescribing systems in pediatrics can only be achieved by systems with appropriate functionality and may be hampered by poorly developed systems16 or implementation strategies.17 At present, many e-prescribing systems fall short of providing expert-recommended functional characteristics.18 Specific challenges in pediatric e-prescribing include age- and indication-specific, weight-based dosing requirements, rounding based on formulary (liquid or solid), the conversion of doses from an ingredient amount to a volume for liquids, the desire to provide easily administered home doses, and, when necessary, extemporaneously compounded dosage forms. Although these systems already confer numerous advantages over the paper-based alternative, they will need to evolve to be an ideal platform for safe and effective pediatric medication prescribing. The features listed in Table 1, derived in part from previous work by the AAP,19 will help address these challenges to safe and effective pediatric prescribing.

RECOMMENDATIONS

1. Because safety for children is paramount, e-prescribing systems used for the care of children should include, at a minimum, pediatric-specific medication catalogs; pediatric-specific decision support, such as weight-based dose calculations and individual and daily dose alerts; rounding; ingredient amount-to-volume conversions for liquid medications; metric-only labeling instructions; and pediatric drug information and formulation options. This recommendation may be implemented by sharing reports, such as the accompanying technical report,20 with standards development organizations and the Office of the National Coordinator for Health Information Technology–Authorized Testing and Certification Bodies to encourage the inclusion of minimum requirements into the development of standards and certification criteria.

2. When possible, e-prescribing systems should be implemented as part of a robust electronic health record and include drug–drug interaction and allergy checking. When implementing a stand-alone e-prescribing system, consideration should be given to a solid design (including correct field length and standard vocabulary) and the potential future need to generate reports with, transfer data to, or interface the e-prescribing system with an electronic health record. E-prescribing systems must be

### Table 1: Pediatric Requirements for Safe and Effective e-Prescribing

<table>
<thead>
<tr>
<th>Category</th>
<th>Pediatric Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Patient information</strong></td>
<td>Date of birth or age in units more specific than years</td>
</tr>
<tr>
<td></td>
<td>Weight in kilograms</td>
</tr>
<tr>
<td></td>
<td>Height in centimeters</td>
</tr>
<tr>
<td></td>
<td>Any history of intolerable adverse effects or allergy to medications</td>
</tr>
<tr>
<td><strong>Medication information</strong></td>
<td>Indication-based dosing and individual and daily dose alerts, using a mg/kg per day or mg/m² per day formula, unless inappropriate</td>
</tr>
<tr>
<td></td>
<td>Weight-based dosing calculations</td>
</tr>
<tr>
<td></td>
<td>All available formulations, including liquid formulations that may be specific brands</td>
</tr>
<tr>
<td></td>
<td>Common formulations requiring extemporaneous compounding or combinations of active ingredients</td>
</tr>
<tr>
<td><strong>Cognitive support</strong></td>
<td>Dose-range checking (minimum and maximum amount per dose, amount per day based on weight, surface area, and total dose)</td>
</tr>
<tr>
<td></td>
<td>Automatic strength-to-volume conversions for liquid medications</td>
</tr>
<tr>
<td></td>
<td>Adverse effect warnings specific to pediatric populations</td>
</tr>
<tr>
<td></td>
<td>Alternative therapies based on ameliorable adverse effects</td>
</tr>
<tr>
<td></td>
<td>Tall Man lettering to reduce medication selection errors</td>
</tr>
<tr>
<td></td>
<td>Medication-specific indications to reduce ordering of sound-alike drugs</td>
</tr>
<tr>
<td><strong>Pharmacy information</strong></td>
<td>Pharmacies that will create extemporaneous compounds</td>
</tr>
<tr>
<td><strong>Data transmission</strong></td>
<td>Use of messaging standards for data transmission to pharmacies that include the patient’s weight and notes pertaining to weight-based calculations</td>
</tr>
<tr>
<td></td>
<td>Transmission of strength, concentration, and dose volume labeled in metric units for liquid medications</td>
</tr>
</tbody>
</table>
efficient for use in pediatric offices and must integrate well with existing office workflow. Recommendation 2 may be implemented by educating providers on the required elements of pediatric-appropriate e-prescribing systems through published reports, such as the accompanying technical report.20

3. E-prescribing systems should be able to provide patients and their parents with administration instructions based on their level of health literacy and their preferred language. Recommendation 3 may be implemented by educating e-prescribing vendors and providers of the need for this feature.

4. Pharmacies should work to enhance their technology infrastructure and workflows to enable efficient acceptance and processing of electronic prescriptions generated and transmitted by certified health information technology. Furthermore, pharmacies should be capable of performing the dose-range checks to provide independent redundancy.

5. Private and public insurers and other third-party payers should offer financial incentives to health care providers and pharmacies to use e-prescribing systems with appropriate decision support.

6. States should work to harmonize their respective legislation to the US Drug Enforcement Agency’s interim final rule on e-prescribing of controlled substances. Recommendations 4, 5, and 6 may be implemented by continued advocacy activities at the local, state, and national levels.

REFERENCES


LEAD AUTHORS

Christoph U. Lehmann, MD
Kevin B. Johnson, MD, MS

COUNCIL ON CLINICAL INFORMATION TECHNOLOGY EXECUTIVE COMMITTEE, 2011–2012

Mark A. De Beccaro, MD, Chairperson
Gregg Alexander, DO
Willia H. Drummond, MD, MS
Anne B. Francis, MD
Eric G. Handler, MD, MPH
Timothy D. Johnson, DO, MMM
George R. Kim, MD
Michael Leu, MD, MS, MHS
Eric Tham, MD, MS
Stuart T. Weinberg, MD
Alan E. Zuckerman, MD

CONSULTANTS

Christoph U. Lehmann, MD
Kevin B. Johnson, MD, MS

STAFF

Jennifer Mansour
Ielnaz Kashefipour, MPP


doi:10.1542/peds.2013-1287
Electronic Prescribing in Pediatrics: Toward Safer and More Effective Medication Management
COUNCIL ON CLINICAL INFORMATION TECHNOLOGY EXECUTIVE COMMITTEE, 2011–2012

*Pediatrics* 2013;131:824; originally published online March 25, 2013;
DOI: 10.1542/peds.2013-0192

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/131/4/824.full.html
Electronic Prescribing in Pediatrics: Toward Safer and More Effective Medication Management
COUNCIL ON CLINICAL INFORMATION TECHNOLOGY EXECUTIVE COMMITTEE, 2011–2012
Pediatrics 2013;131;824; originally published online March 25, 2013;
DOI: 10.1542/peds.2013-0192

Updated Information & Services
including high resolution figures, can be found at:
/content/131/4/824.full.html

References
This article cites 18 articles, 8 of which can be accessed free at:
/content/131/4/824.full.html#ref-list-1

Citations
This article has been cited by 6 HighWire-hosted articles:
/content/131/4/824.full.html#related-urls

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Administration/Practice Management
/cgi/collection/administration:practice_management_sub
Medical Technology and Advancement
/cgi/collection/med_tech_advancement_sub
Health Information Technology
/cgi/collection/health_information_technology_sub
Electronic Health Records
/cgi/collection/electronic_health_records_sub

Errata
An erratum has been published regarding this article. Please see:
/content/132/1/179.full.html

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml