Teens and Indoor Tanning: A Cancer Prevention Opportunity for Pediatricians

abstract

In October 2011, California became the first US state to ban indoor tanning for minors under age 18 years. Vermont followed in May 2012. Increasingly, scientific evidence shows that artificial tanning raises the risk of skin cancer, including melanoma, a common cancer in adolescents and young adults and the type most likely to result in death. The World Health Organization, the American Academy of Pediatrics, the American Academy of Dermatology, the American Medical Association, and other organizations strongly recommend legislation to ban minors under age 18 from indoor tanning. Several nations have banned teen tanning. Yet, tanning in salons is still a prevalent practice in the United States, especially among teen girls, where rates for the oldest teens approach 40%. There is no federal legislation to restrict minors from salon tanning. More than 60% of states have some kind of legislation regarding minors’ use of tanning salons, but only California and Vermont have passed complete bans of indoor tanning for minors. The Indoor Tanning Association, an industry advocacy group, has vigorously opposed legislative efforts. Pediatricians can play key roles in counseling families and with legislative efforts. In this update, we review the prevalence of salon tanning, association with skin cancer risk, tanning addiction, the roles of the federal and state governments in regulation and legislation, and responses to arguments created by industry to oppose legislation. Preventing exposure to artificial tanning may save lives, including young lives, and is a key cancer prevention opportunity for pediatricians. Pediatrics 2013;131:772–785

AUTHORS: Sophie J. Balk, MD,a David E. Fisher, MD, PhD,b and Alan C. Geller, RN, MPHc

aChildren’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York; bDepartment of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and cHarvard School of Public Health, Massachusetts General Hospital, Boston, Massachusetts

KEY WORDS

indoor tanning, artificial tanning, teenagers, skin cancer, melanoma, prevention, tanning addiction, tanning legislation

ABBREVIATIONS

BCC—basal cell carcinoma
FDA—US Food and Drug Administration
FTC—US Federal Trade Commission
ITA—Indoor Tanning Association
NMSC—nonmelanoma skin cancer
POMC—pro-opiomelanocortin
SCC—squamous cell carcinoma
USPSTF—US Preventive Services Task Force
UVR—UV radiation

Dr Balk conceptualized the article, drafted the initial manuscript, and approved the final manuscript as submitted; and Dr Fisher and Mr Geller conceptualized the article, critically reviewed and revised the article, and approved the final manuscript as submitted.

www.pediatrics.org/cgi/doi/10.1542/peds.2012-2404
doi:10.1542/peds.2012-2404

Accepted for publication Oct 17, 2012

Address correspondence to Sophie J. Balk, MD, 1621 Eastchester Rd, Bronx, NY 10461. E-mail: sbalk@montefiore.org

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).

Copyright © 2013 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The authors have no financial relationships relevant to this article to disclose.

FUNDING: No external funding.
BACKGROUND
Prevalence
People may be exposed to artificial sources of UV radiation (UVR) for treatment of certain medical conditions, in occupational settings, and for cosmetic purposes. Sunlamps and tanning beds are the main sources of artificial UVR used for deliberate purposes. Indoor tanning started in the 1970s and has grown rapidly. Now >1 million people in the United States tan in tanning salons each day. Many of those who visit tanning salons are adolescent girls and young women. According to the 2009 Youth Risk Behavior Survey, a nationally representative sample of high school students in grades 9 through 12, 15.6% of all students used an indoor tanning device ≥1 times during the 12 months before the survey. Among students who reported using devices within the past year, 49.1% reported doing so ≥10 times. Female students and white students were more likely to use tanning devices ≥10 times. More than one-quarter (25.4%) of girls reported using a tanning device in the past year. The rate of artificial tanning among white girls increases with age, doubling from ages 14 to 15 (7% to 15%), and doubling again at age 17 (35%). Tanning salons are ubiquitous. The average US city has 41 salons, outnumbering the number of Starbucks or McDonalds. Access is easy. Salons are inexpensive and often offer “unlimited” tanning packages. Adolescents are specifically targeted through advertising strategies that include promoting purported cosmetic and health benefits.

Young adults and some adolescents have opportunities to access indoor tanning in nonsalon locations, including apartments, beauty salons, and fitness centers. Regulations governing minors’ access to tanning salons do not affect these sites, and there is little scientific information available about them.

Radiation Emitted by Tanning Devices
Tanning devices emit primarily UV-A radiation. UV-B radiation is much more potent than UV-A in causing sunburn, but high fluxes of UV-A can cause erythema in people who are sensitive to sunlight. In people who tan easily, exposure to tanning devices results in immediate pigment darkening caused by oxidation of existing melanin. A more permanent tan occurs with additional exposure, depending on the individual’s tanning ability and the amount of UV-B in the lamps. UV-B exposure results in greater tanning; newer tanning lamps may emit a greater proportion of UV-B.

The doses of UV-A emitted by high-pressure tanning units may be up to 10 to 15 times higher than that of the midday sun, an intense exposure not found in nature. Frequent indoor tanners may receive 1.2 to 4.7 times the yearly dose of UV-A received from sunlight, in addition to doses from sun exposure.

Skin Cancer Incidence
The incidence of skin cancer has reached epidemic proportions. Skin cancer (including basal cell carcinoma [BCC], squamous cell carcinoma [SCC], and melanoma) is by far the most common cancer. Approximately 3.5 million BCCs and SCCs in >2 million Americans are diagnosed each year. BCC and SCC (grouped together as nonmelanoma skin cancer [NMSC]) are less likely to result in fatality compared with melanoma. Nonetheless, the American Cancer Society estimates that ~2000 people die each year of NMSC. There is considerable morbidity and cost associated with treating NMSC. The American Cancer Society estimates that 76 690 new melanomas will be diagnosed in 2013; ~9480 people are expected to die of melanoma in 2013. US incidence rates for melanoma have been rising in all age groups since first recorded in 1973. Melanoma is more likely to occur in males and at older ages but also occurs in teenagers and in young adults. Melanoma is the second most common cancer in women in their 20s and the third most common cancer in men in their 20s. Data from the SEER (Surveillance, Epidemiology, and End Results) Program show that the age-adjusted annual incidence rate for women aged 15 to 39 years more than doubled from 5.5 per 100 000 (range: 4.5–6.6) in 1973 to 13.9 per 100 000 (12.7–15.2) in 2004. The rise in the incidence rate for women has been sharpest since 1992. Melanoma incidence increased for both thin and thick tumors and was greater for regional and distant tumors compared with localized lesions. In Olmstead County, Minnesota, melanoma incidence increased 4-fold in young men but 8-fold in young women over a 30-year period: among men ages 18 to 39 years, the incidence rose from 4.3 per 100 000 between 1970 and 1979 to 18.8 per 100 000 between 2000 and 2009; among women ages 18 to 39 years, the incidence rose from 5.4 per 100 000 between 1970 and 1979 to 43.5 per 100 000 between 2000 and 2009. Experts believe that 1 reason for this dramatic increase is the increasing popularity of artificial tanning, especially among young women.

The incidence of NMSC also is increasing in young adults. Between 1976 and 2003, the incidence of BCC increased significantly among young women (<40 years of age), and the incidence of SCC increased significantly among men and women. A trend toward a greater number of BCC cases occurring on the torso in younger patients has been reported. This change in location supports the possibility that excessive outdoor tanning, use of tanning booths, or both give rise to BCC. The use of tanning beds has been shown...
to be a risk factor for NMSC in young women.19

TANNING RESULTS IN DNA DAMAGE

The skin is composed of the epidermis, dermis, and subcutaneous layer. The top layer, the epidermis, includes basal cells, squamous cells (together known as keratinocytes), and melanocytes. Keratinocytes produce keratin, which is a structural and protective protein. Melanocytes produce melanin, a family of pigments spanning brown-black to blond-red colors. After their synthesis in melanocytes, melanin-containing vesicles are transported to overlying keratinocytes, where they traffic selectively to the sun-exposed side of nuclei. Darker melanins appear to protect the skin by absorbing UVR and reactive oxygen species.

Recent evidence indicates that the tanning response is mediated, in significant part, by signals emanating directly from damage to DNA. Exposure to UVR triggers DNA damage in the nuclei of keratinocytes, activating the p53 tumor-suppressor protein, a transcription factor that plays a pivotal role in the cellular response to genotoxic stressors such as UV- and chemically induced DNA damage.20 p53 directly activates transcription of numerous genes such as those that regulate cell-cycle progression and apoptotic cellular pathways. p53 function is critical for the retention of tissue integrity after UV irradiation of skin. Loss of function of p53 leads to aberrant cell growth and survival responses; dysfunction of p53 plays an integral part in human cancer development.20 p53 activation in the skin leads to upregulation of the gene that encodes pro-opiomelanocortin (POMC), a polypeptide precursor present throughout the central nervous system and skin. POMC is then processed to produce α-melanocyte–stimulating hormone, which after secretion, stimulates its receptor; the melanocortin 1 receptor on the surface of melanocytes, to induce the synthesis, maturation, trafficking, and secretion of melanin. After the uptake of melanin by overlying keratinocytes, skin takes on a darker appearance, which results in tanning (Fig 2).21 Thus, tanning occurs as a response to DNA damage and appears to be a component of the p53-induced stress response. Any wavelength of UV (ie, UV-A or UV-B) that is capable of inducing tanning (thus elevating carcinogenic risk) appears to do so via damage to DNA as a first step because the DNA damage response factor p53 is a key mediator of the tanning pathway.20

ACUTE AND LONG-TERM EFFECTS OF EXPOSURE TO ARTIFICIAL TANNING

Exposure to artificial UVR often results in erythema and sunburn. Erythema or burning was reported in 18% to 55% of users of indoor tanning equipment in North America and Europe.1 A large US study of teen tanning-bed use revealed that 57% experienced at least 1 sunburn during a salon visit.22 Other reported effects include skin dryness, pruritus, nausea, photodrug reactions, disease exacerbation (eg, systemic lupus erythematosus), and disease induction (eg, polymorphous light eruption). Long-term health effects include skin aging, effects on the eye (eg, cataract formation), and carcinogenesis.7

ARTIFICIAL TANNING IS CARCINOGENIC

In 2006, the International Agency for Research on Cancer (a branch of the World Health Organization) issued a report1 based on meta-analysis of 19 studies of associations between tanning-bed use and skin cancer risk. On the basis of these data, in 2009 the International Agency for Research on Cancer declared that UVR from salons was a group 1 carcinogen (ie, known to cause cancer in humans).23 These findings were criticized by some because of the weak association and inability to
confirm a dose-response relationship or examine exposure to specific tanning devices. Since then, new studies have strengthened the association of tanning-bed use with increased melanoma risk (Table 1). In 2012, a meta-analysis of 27 observational studies showed that for users of indoor tanning devices the risk of melanoma increased 20%, which doubled if tanning started when users were younger than 35 years.9

WHY PEOPLE TAN

Despite evidence that UVR exposure increases skin cancer risk, people continue to intentionally tan. Knowledge about the dangers of UVR often does not change tanning behavior.24,25 These practices may persist because many people believe that a tanned appearance is attractive and healthy. In 1 study, 67.8% of youth agreed with the statement “I look better when I have a tan” and 55% agreed with the statement “I feel healthy when I have a nice tan.”26 In addition to the desire for improved appearance, motivations in some tanners include relaxation and a better mood. In view of potentially severe consequences, it has been postulated that continued and frequent use of tanning beds shares characteristics with addictive disorders.27 and that for some individuals, tanning behavior may be motivated, at least in part, by a type of UV light substance-related disorder.

To characterize possible tanning addiction, researchers have used surveys that included tanning-specific modifications of 2 established instruments. The CAGE (Cut down, Annoyed, Guilty, Eye-opener) Questionnaire screens for alcohol abuse or dependence. Modifications include questions about whether tanners wanted to cut down but nevertheless continued and whether tanners felt annoyed when others advised them not to tan. The second instrument uses a modification of the American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision, criteria for substance-related disorders. Questions include tolerance to tanning (ie, need for increased amounts of tanning to achieve a desired effect), withdrawal symptoms, and loss of control such as use despite a desire to cut down. Table 2 describes some studies of tanning addiction.

A small study found increased plasma concentrations of β-endorphin after UVR exposure in frequent tanners.28 Other studies have not observed such elevations.29,30 Blood endorphin concentrations appear to fluctuate through the day, so these studies might be limited, and more research is needed. It is interesting to consider whether an endorphin-mediated addictive mechanism might have conferred an advantage to human survival. UVR exposure results in conversion of vitamin D precursors in skin to vitamin D; adequate vitamin D is needed to ensure human survival.31 Among the cleavage products of POMC are the glucocorticoid precursor adrenocorticotropic hormone (ACTH) and β-endorphin, an endogenous ligand of the µ-opioid receptor. Endogenous β-endorphin exerts analgesic

FIGURE 2
Molecular Mechanism of Skin Pigmentation Induced by UV Radiation. Ultraviolet light triggers DNA damage in the nucleus of keratinocytes, resulting in the activation of p53, which transcriptionally up-regulates the expression of the gene encoding proopiomelanocortin (POMC). POMC is post-translationally processed to produce melanocyte-stimulating hormone (MSH) and β-endorphin. After secretion, MSH acts on its receptor, the melanocortin 1 receptor, located on melanocytes at the basal layer of the epidermis, thereby inducing the production of pigment, which is subsequently transported out of melanocytes to overlying keratinocytes, where the pigment vesicles coalesce over the sun-exposed side of the nucleus, resulting in tanning. (Reprinted with permission from Fisher DE, James WD. Indoor tanning—science, behavior, and policy. N Engl J Med. 2010;363:363-362.)
Based on findings, the IARC declared that artificial UVR is a group A carcinogen.

TABLE 1 Studies of Tanning-Bed Use and Melanoma Risk

<table>
<thead>
<tr>
<th>Name</th>
<th>Study Type</th>
<th>Study Population, Methods</th>
<th>Main Findings</th>
<th>Other Findings</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>The association of use of sunbeds with cutaneous malignant melanoma and other skin cancers: a systematic review (2008)</td>
<td>Meta-analysis of 19 studies that examined associations between use of an artificial tanning device ("sunbed") and skin cancer risk.</td>
<td>A 15% increase in melanoma risk (95% CI: 1.10, 1.31) for those who ever used a sunbed compared with those who never did; no consistent evidence of a dose-response relationship.</td>
<td>RR of melanoma greater with first use before age 35 (summary RR based on 7 studies: 1.75; 95% CI: 1.35, 2.26).</td>
<td>Based on findings, the IARC declared that artificial UVR is a group A carcinogen.</td>
<td></td>
</tr>
<tr>
<td>Australian Melanoma Family Study (2011)</td>
<td>Population-based, case-control family study of early-onset melanoma.</td>
<td>604 cases diagnosed between ages 18 and 59, 479 controls.</td>
<td>Compared with never using, OR for melanoma associated with ever using sunbed = 1.41 (95% CI: 1.01, 1.96) and 2.01 (95% CI: 1.22, 3.31) for >10 lifetime sessions (Pcumulative = .01), consistent with a dose-response relationship.</td>
<td>Stronger association for earlier age at first use (Pcumulative = .02), also for melanoma diagnosed at 18–29 y (OR for >10 lifetime sessions = 6.57; 95% CI: 1.41, 30.49) than for melanoma diagnosed at 30–39 y (OR: 1.60; 95% CI: 0.92, 2.77; Pinteraction = .01).</td>
<td>Among those who ever used a sunbed and were diagnosed between 18 and 29 y, 76% of melanomas attributable to sunbed use.</td>
</tr>
<tr>
<td>Indoor tanning and risk of melanoma: a case-control study in a highly exposed population (2010)</td>
<td>Case-control study in Minnesota.</td>
<td>1167 melanoma cases, 1101 controls ages 25–59 y.</td>
<td>63% of cases and 51% of controls ever indoor tanned (adjusted OR: 1.74; 95% CI: 1.42, 2.14). Risk increased in both users of UV-B-enhanced devices (adjusted OR: 2.98; 95% CI: 2.03, 4.03) and primarily UV-A-emitting devices (adjusted OR: 4.44; 95% CI: 2.45, 8.02). Greater risk associated with greater use when examined with regard to years of exposure (P < .008), hours (P < .0001), or sessions (P < .0002).</td>
<td>ORs elevated within each initiation age category; years of use among indoor tanners was more relevant for melanoma development.</td>
<td>Authors concluded that frequent indoor tanning increased melanoma risk independent of outdoor sun exposure and regardless of age when tanning began.</td>
</tr>
<tr>
<td>Norwegian-Swedish Women's Lifestyle and Health Cohort Study (2010)</td>
<td>Prospective cohort study established 1991–1992. Subjects in Norway came from nationwide random sample of 100 000 women born 1943–1957. Subjects in Sweden were 96 000 randomly selected women born 1943–1982.</td>
<td>Researchers examined subjects' responses about host factors sun exposure and solarium (ie, sunbed or sunlamp) use through 5 age decades (<10, 10–19, 20–29, 30–39, 40–49 y). Among 106 366 women with complete follow-up through 2005, 412 melanoma cases were diagnosed. Risk increased with the number of sunburns and bathing vacations in the first 3 age decades (Pcumulative = .04).</td>
<td>Compared with "no use" of a solarium in the 3 decades from 10 to 39 y, RR increased from 1.24 for "rarely use" in any decade to 1.58 for "use 1 or more times per month in 1 of 3 decades" to 2.37 for "use 1 or more times per month in 2 or 3 decades" (Pinteraction = .003).</td>
<td>Authors concluded that melanoma risk seems to continue to increase with accumulating intermittent sun exposure and solarium use in early adulthood. People with nevi and red hair were at particular risk for developing melanoma.</td>
<td></td>
</tr>
<tr>
<td>Cutaneous melanoma attributable to sunbed use: systematic review and meta-analysis (2012)</td>
<td>Meta-analysis of 27 observational studies of sunbed use.</td>
<td>Ever use of sunbeds associated with summary RR of 1.20 (95% CI: 1.08, 1.34).</td>
<td></td>
<td>Study confirms doubling of melanoma risk when first use at a young age (<35 y).</td>
<td>Dose-response relationship found between amount of use and melanoma risk. In Europe each year, 34 388 estimated new cases of melanoma due to sunbed use, most among women.</td>
</tr>
</tbody>
</table>

CI, confidence interval; IARC, International Agency for Research on Cancer; OR, odds ratio; RR, relative risk; UVR, UV radiation.
<table>
<thead>
<tr>
<th>Name</th>
<th>Study Type</th>
<th>Study Population, Methods</th>
<th>Main Findings</th>
<th>Other Findings</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV light tanning as a type of substance-related disorder. (2005)</td>
<td>Convenience sample. In Galveston, TX, 145 beachgoers ≥18 y interviewed with the use of modifications of the CAGE (mCAGE) and DSM-IV (mDSM-IV-TR) instruments. Two or more affirmative responses to questions on mCAGE and ≥3 affirmative responses to mDSM-IV-TR during the same 12-mo period were, respectively, tabulated as evidence for UVL tanning dependence.</td>
<td>26 of 145 (18%) screened positive on both measures, 63 (43%) screened positive on 1 measure. Positive mDSM-IV-TR subjects 2.2 times more likely than negative mDSM-IV-TR subjects to go to the beach to tan (P = .05). Women were 5.5 times more likely than men (P < .001), and young people (ages 18–25 y) were 3.1 times more likely than older people (age ≥36 y) (P = .04) to go to the beach to tan.</td>
<td>Subjects screening positive on mCAGE were 2.2 times more likely than negative mCAGE subjects to go to the beach to tan (P = .08).</td>
<td>Authors concluded that those who chronically and repeatedly exposed themselves to UVR to tan may have a UVR substance-related disorder.</td>
<td></td>
</tr>
<tr>
<td>Addiction to indoor tanning: relation to anxiety, depression, and substance use (2010)</td>
<td>Survey of 229 college students who had tanned indoors. CAGE and DSM-IV-TR questionnaires modified to assess the prevalence of tanning addiction and its association with substance use and symptoms of anxiety and depression.</td>
<td>70 of 229 (31%) met CAGE criteria and 90 of 229 (39%) met DSM-IV-TR criteria for addiction to indoor tanning. Tanners who met modified DSM-IV-TR and CAGE criteria for addiction to indoor tanning reported significantly greater symptoms of anxiety and greater use of alcohol, marijuana, and other substances than respondents not meeting the criteria.</td>
<td></td>
<td>Authors suggested that for some individuals, interventions to reduce skin cancer risk should address addictive qualities of indoor tanning and the relationship of indoor tanning to other addictions and affective disturbances.</td>
<td></td>
</tr>
<tr>
<td>Addictive-like behaviours to ultraviolet light among frequent indoor tanners (2010)</td>
<td>In Dallas, TX, survey of 100 frequent (≥3 times weekly) indoor tanners. Modifications of CAGE and DSM-IV-TR instruments.</td>
<td>41% met criteria consistent with "tanning addictive disorder" and another 33% met criteria for "problematic tanning behavior."</td>
<td></td>
<td>Authors suggested that findings are similar to studies showing that early age at first alcohol, nicotine, and cannabis use is a risk factor for subsequent development of the respective substance-related disorder.</td>
<td></td>
</tr>
<tr>
<td>Ultraviolet exposure is a reinforcing stimulus in frequent indoor tanners (2004).</td>
<td>Double-blind controlled design to determine whether there was a physiologic preference for UVR compared with non-UVR.</td>
<td>14 frequent adult tanners exposed to either a commercially available tanning bed or to identically appearing bed with acrylic filter that prevented the transmission of UVR (ie, "sham light"). Frequent tanners exhibited overwhelming preference (93%) for UV-emitting tanning beds. Subjects reported a more relaxed and less tense mood after UVR exposure compared with after non-UVR exposure.</td>
<td></td>
<td>Results suggest that UV tanning might have reinforcing properties.</td>
<td></td>
</tr>
<tr>
<td>Induction of withdrawal-like symptoms in a small randomized, controlled trial of opioid blockade in frequent tanners (2006).</td>
<td>Randomized controlled trial comparing reactions to opioid antagonist naloxone given to frequent and infrequent salon tanners. Naloxone given to 8 frequent salon tanners and 8 people who were infrequent tanners. Withdrawal-like symptoms induced in 4 of 8 frequent salon tanners; no symptoms occurred in 8 infrequent tanners.</td>
<td></td>
<td></td>
<td>Authors discussed possibility that cutaneous endorphin release resulting from UVR exposure may be involved in reinforcing property of tanning, leading some individuals to seek tanning.</td>
<td></td>
</tr>
</tbody>
</table>
These changes accompanied by decreases in subjective desire to tan after UVR exposure but not when asked after sham UVR. When asked which bed was preferred, most subjects selected the UVR session rather than sham session.
TANNING INDUSTRY FALSE CLAIMS AND DECEPTIVE PRACTICES

The US Federal Trade Commission (FTC) investigates false and deceptive advertising claims, such as the claim that tanning in salons is safer than tanning outdoors. The commission files a complaint when it has “reason to believe” that the law has been or is being violated. The FTC has the power to issue consent orders to ban further deception. The FTC issued a complaint against the ITA alleging that, in March 2008, the ITA launched an advertising campaign portraying indoor tanning as safe and beneficial. The campaign included 2 national newspaper ads, television and video advertising, 2 Web sites, a communications guide, and point-of-sale materials that were provided to ITA members. The ITA claimed that indoor tanning was safer than outdoor tanning because the amount of UVR is monitored and controlled and that it neither increased skin cancer risk nor posed a danger to consumers. The ITA also claimed that research showed that vitamin D supplements may harm the body’s ability to fight disease, and that a study from the National Academy of Sciences determined that “the risks of not getting enough ultraviolet light far outweigh the hypothetical risk of skin cancer.” The ITA stated that indoor tanning is approved by the government, misrepresenting the nature of FDA approval. In January 2010, the FTC issued a consent order and the ITA agreed to a settlement barring it from any further deception.

In 2012, a minority investigative report commissioned by 4 Democratic members of the US House of Representatives Committee on Energy and Commerce described results of “sting” telephone calls made by congressional staff to 300 tanning salons nationwide. Congressional staff posed as 16-year-old women wanting to tan for the first time. On the basis of answers given by salon workers, the report concluded that salons target teenage girls with advertising and promotions, deny known risks of indoor tanning, provide false information on benefits of tanning, and fail to follow FDA recommendations on tanning frequency. The tanning industry questioned the veracity of the study and conclusions but acknowledged that they could improve on giving accurate and consistent information to customers.

FEDERAL LEGISLATION

Regulation of the tanning industry has been lax. As of February 2013, there is as yet no federal legislation prohibiting minors from tanning in salons. As of July 1, 2010, under the Affordable Care Act, indoor tanning services were levied with a 10% excise tax (the so-called tanning tax or tan tax). Tanning salons are required to receive a payment for indoor tanning services, report the tax quarterly and remit the tax to the Internal Revenue Service. Sunless tanning options such as spray tans and tanning lotions are not included. The “tanning tax,” a part of President Obama’s administration’s health care overhaul plan, is expected to raise 2.7 billion dollars over the next 10 years. The indoor tanning industry expressed vigorous opposition to the tanning tax.

TABLE 3 FDA Classification of Medical Devices

<table>
<thead>
<tr>
<th>FDA Class</th>
<th>Examples</th>
<th>Requirements</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Tongue depressors, elastic bandages, indoor tanning devices.</td>
<td>Class I devices present minimal potential for harm. Subject to general controls to ensure safety and effectiveness, including registering with FDA, proper branding and labeling, and notifying FDA before marketing. Subject to “good manufacturing practice” requirements: FDA requires manufacturers to consistently meet applicable requirements for their safety and efficacy.</td>
<td>Tanning beds used for cosmetic purposes are categorized as class I with exemption 510(k). Manufacturers of devices with this exemption not required to give premarket notification to show safety and efficacy and substantial equivalence to other devices already in the market. Tanning beds also exempt from design controls that require manufacturers to establish and validate a development process through which the design control documentation must be available for FDA review during a site inspection.</td>
</tr>
<tr>
<td>II</td>
<td>X-ray machines, UV lamps used for dermatologic disorders, laser equipment used in surgery and dermatology.</td>
<td>Require special controls that may include special labeling requirements, mandatory performance standards, postmarket surveillance, patient registries, and development and dissemination of guidance documents.</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Replacement heart valves, silicone gel-filled breast implants, and implantable cerebellar stimulators.</td>
<td>Require additional information regarding safety and effectiveness and require premarket approval and scientific review.</td>
<td></td>
</tr>
</tbody>
</table>
Tanning is a parent’s concern. The ITA contends that tanning bed users are less likely to spend time in the sun compared with people practicing “total abstinence,” which “ultimately encourages abuse,” and that tanning bed users are taught sun protection by tanning salon personnel. The ITA states that tanning bed users are less likely to sunburn intentionally and use tanning beds. Teens using tanning beds are more likely than those who do not use tanning beds to experience sunburns (76% vs 68%). People who use tanning beds are more likely to spend more time outdoors and less likely to use sunscreen. Older teens who used tanning beds ≥10 times in the past year were more likely to have ≥3 sunburns compared with teens who did not use tanning beds (28% vs 20%; P = .001). Although individuals who burn before tanning are at greater risk of melanoma, people who do not burn but tan also are at risk. Case studies and case-control studies from all geographic areas of the US show that melanoma occurs in people without established risk factors (such as light skin that has a tendency to burn [type I and II] and high sun sensitivity) known to increase melanoma risk. Twenty-one percent of melanomas occurred in individuals reporting no or mild sunburn. In Washington State, 85% of melanoma cases reported that they had either a deep tan, moderate tan, or mild tan in response to chronic sun exposure. In Connecticut, 30% of melanoma cases had medium skin as objectively measured by examination of the inner aspect of the upper arm. 56% of cases in California and Michigan reported non-sun-sensitive skin.

Abundant evidence suggests that melanoma risk is lower in darkly pigmented individuals (from birth) than in lightly pigmented ones. However, as described in the text, UV-induced tanning can enhance melanoma risk, because of the use of a known carcinogen (UVR) as the means to achieve pigmentation. People may visit a tanning salon to prepare the skin for a sunny vacation, the “prevacation tan,” thinking that a “base tan” will protect against subsequent skin damage during the vacation. This leads to extra radiation before the vacation and also afterward, because people may use fewer sun-protection precautions during the vacation because of a mistaken belief that the tan will protect them. The prevacation tan results in minimal protection (an estimated SPF of 3) and provides virtually no protection against sun-induced DNA damage.

In fact, in 2012 the US Preventive Services Task Force concluded that “the current evidence is insufficient to assess the balance of the benefits and harms of vitamin D supplementation, with or without calcium, for the primary prevention of cancer in adults.” Given the enormous variables of geographic UV intensity, daytime UV intensity variability, skin pigmentation (darkness), and skin surface area exposed to sunlight, it is virtually impossible to predict UV dose-responses capable of maintaining plasma vitamin D concentrations. In contrast, oral supplementation provides a reproducible and verifiable means.

Table 4: Tanning Industry Claims and Responses

<table>
<thead>
<tr>
<th>Industry Claim</th>
<th>Response by Child Health Advocates</th>
</tr>
</thead>
<tbody>
<tr>
<td>People using tanning beds are less likely to sunburn. The ITA contends that</td>
<td>On the contrary, strong tan-promoting attitudes drive teens to sunbathe intentionally and use</td>
</tr>
<tr>
<td>tanning bed users are less likely to spend time in the sun compared with people</td>
<td>tanning beds. Teens using tanning beds are more likely than those who do not use</td>
</tr>
<tr>
<td>practicing “total abstinence,” which “ultimately encourages abuse,” and that</td>
<td>tanning beds to experience sunburns (76% vs 68%). People who use tanning beds are</td>
</tr>
<tr>
<td>tanning bed users are taught sun protection by tanning salon personnel. The ITA</td>
<td>more likely to spend more time outdoors and less likely to use sunscreen. Older teens</td>
</tr>
</tbody>
</table>
violated state law. Approximately 32% did not inspect tanning facilities for compliance with state law; another 32% conducted inspections less than annually. Of the 21 cities in states that had youth access laws, approximately half penalized those salons with known violations. The authors expressed concern about relatively low rates of annual inspections and citations. They recommended that future studies assess whether legislation, enforcement practices, or both affect indoor tanning practices.45

LEGISLATION IN OTHER COUNTRIES

Several nations have strong antitanning legislation. In 2009, Brazil imposed a total ban on the use and sale of tanning devices for cosmetic purposes for the entire population.46

In 2012, the state of New South Wales (population >5 million) in Australia announced a total ban by 2014.47 France, Germany, Austria, and the United Kingdom banned under-18 indoor tanning. South Australia imposed a ban for those younger than 18 and for anyone with type I skin, the type most susceptible to skin cancer. Finland allows only certain types of devices for indoor tanning use and requires inspections to ensure that regulations are upheld.46

RECOMMENDATIONS ABOUT TANNING LEGISLATION

The World Health Organization,48 the American Academy of Pediatrics,49 the American Academy of Dermatology,50 the American Medical Association,51 the Canadian Pediatric Society,52 and others recommend legislation to ban minors younger than 18 years from tanning in salons.

PARENT INFLUENCES

Mothers’ behaviors and attitudes may influence teen tanning practices. A population-based survey found that indoor tanning in the year before the survey was 30% among 12- to 18-year-olds whose caregiver also reported tanning indoors.44 Investigators in Minnesota and Massachusetts conducted telephone surveys of adolescents aged 14 to 17 years and their female parents or guardians to determine their role in teen tanning attitudes and practices. Female parents’ behavior, concern about children’s indoor tanning practices, and permissoness were significant independent contributors to teen tanning.53 In another study, researchers sent questionnaires to female college students to investigate whether first-time indoor tanning with one’s mother would influence the frequency of tanning later in life and whether it was associated with age of initiation. Participants who reported tanning with mothers during their initial experience were >4 times more likely to be heavy current tanners than those who initiated tanning alone or with someone other than their mother (odds ratio: 4.64; P < .001). Participants who tanned for the first time with mothers started tanning at a significantly earlier age than those who started tanning without mothers.54 Additional research from national studies is needed to determine the prevalence of artificial tanning in mothers of teens.

PARALLELS BETWEEN SMOKING AND TANNING

Researchers and advocates from the disciplines of tobacco control and indoor tanning met in November 2011 to discuss common challenges and lessons. By consensus, participants agreed that legislative remedies must be sought as part of comprehensive programs, including the following: higher taxes; education for parents, pediatricians, and policymakers; and counteradvertising to refute tanning industry claims.

ROLE OF PEDIATRICIANS AND OTHER CLINICIANS

Indoor tanning is practiced by as many as 35% to 40% of white adolescent girls. It is estimated that 25% of melanomas observed in young women might be attributable to using tanning beds.55 It therefore stands to reason that pediatricians have an obligation to discuss this potentially life-threatening practice with families. Although pediatricians are often considered trusted advisors to families, sometimes over years and decades, many do not take opportunities to discuss indoor tanning.56 This may be due, in part, to a general view that skin cancer prevention is primarily an issue for dermatologists. Yet, skin cancer prevention, a lifelong effort, is clearly a pediatric issue as well as a dermatology issue. By the time a teen or young adult arrives in a dermatologist’s office to evaluate a suspicious skin lesion (one that may be melanoma) the opportunity for prevention may have been lost. Counseling by pediatricians to reduce UVR exposure is likely to result in behavior change in some teens and families. In July 2012, the US Preventive Services Task Force (USPSTF) published an update of their 2003 recommendation regarding the effectiveness of behavioral counseling to prevent skin cancer. The USPSTF stated that there was adequate evidence in the scientific literature to conclude that counseling delivered in the primary care setting can moderately increase the use of protective behaviors for fair-skinned people between the ages of 10 and 24 years. Successful counseling interventions used messages about skin cancer or about the effects of UVR exposure on appearance. Appearance-focused messages succeeded in reducing intent to use indoor tanning among late-adolescent women. Behavioral interventions were not associated with any known risks or harms. The USPSTF thus recommended counseling fair-skinned children, adolescents, and young adults about minimizing their exposure to UVR. Evidence was not sufficient to conclude...
that counseling resulted in behavior change in girls younger than age 10 or women older than 24 years. Under the Affordable Care Act, the health insurance reform legislation passed by Congress and signed into law by President Obama on March 23, 2010, counseling patients to avoid tanning beds (a recommendation receiving a “B” rating from the USPSTF) is a covered service and thus is fully reimbursable. The American Academy of Pediatrics and other organizations interested in pediatric health should consider interventions for the best methods in training pediatricians in tanning-bed avoidance counseling as well as informing them of the new covered service. Because teens begin to take up tanning at 13 to 14 years of age, pediatricians may adopt a strategy of discussing indoor tanning at the 12-year-old well-child visit. Most parents state that they do not want their children to use tanning devices but most have not discussed tanning with their child. Pediatricians may influence tanning practices by inquiring about the mother’s tanning practices and asking her if she has started discussions with her child. Interventions directed at the mother may reduce her practices and lead to reduced tanning initiation and frequency of the child’s tanning. It should be noted that although parents may not approve of tanning indoors, they may have adopted a “pick your battles” strategy, feeling it to be more important to enforce rules on issues such as smoking or dating rather than focusing on tanning. For some teens and their families, this decision may have major health consequences. Table 5 lists some recommendations for integrating questions into practice. Considering the teen’s perspective about tanning benefits may be helpful. She may be an “event tanner” preparing for a wedding or prom or may tan regularly as a mood enhancer or to relieve stress. Physicians may use open-ended questions, such as “How does having a tan make you feel?,” to gain insight and provide appropriate interventions. For “event tanners,” pediatricians may suggest substituting spray tanning or self-applied lotion to give a tanned appearance. An event tanner interested in appearance may also be receptive to information about indoor tanning as a cause of premature skin aging. For regular tanners who do so to relax and improve mood, physicians may suggest substituting running, dancing, or other aerobic activities.

Pediatricians have important roles in advocating for state laws to prevent minors from accessing tanning salons. Legislators who are parents and grandparents may be receptive to a pediatrician’s voice, particularly if the pediatrician is the family’s doctor. State-specific legislation should conform to FDA recommendations. Pediatricians also have a role at the federal level, working to change FDA classification of indoor tanning devices to class II or III and advocating for federal legislation to ban under-18 access.

Resources to help pediatricians address indoor tanning (akin to those that help clinicians discuss smoking cessation and secondhand smoke exposure) need to be developed. One model is the CEASE (Clinical Effort Against Secondhand Tobacco Exposure) Program developed to help clinicians counsel about smoking cessation and harm reduction by using written and video materials. Another is the American Academy of Pediatrics’ Julius B Richmond Center, which provides an array of education, training, and tools for clinicians. Resources are needed in academic settings, especially in pediatric settings, to train medical students and residents. Funding will be needed for all these efforts.

TABLE 5 Recommendations for Pediatricians Regarding Tanning Beds

<table>
<thead>
<tr>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Aim to integrate discussions about exposure to UVR, including tanning beds, into annual well-child and well-adolescent visits.</td>
</tr>
<tr>
<td>- Discuss risks of artificial tanning with parents as well as teens.</td>
</tr>
<tr>
<td>- Discuss prevention of sunburn and artificial tanning during “teachable moments” such as when a teen (or her parent) presents with a tan or sunburn.</td>
</tr>
<tr>
<td>- Be aware that many teens will tan before special events such as a prom; suggest spray tanning as an alternative if the teen is committed to looking darker.</td>
</tr>
<tr>
<td>- Add a question about indoor tanning if using forms that are filled out by parents and/or teens; add a prompt about discussing tanning-bed use in “adolescent risk factor” section when designing or modifying electronic medical records for preteens and teens.</td>
</tr>
<tr>
<td>- Advocate for state legislation banning under-18 salon tanning.</td>
</tr>
<tr>
<td>- Advocate for changes in federal legislation regarding classification of tanning salons and for banning minors’ access to tanning salons.</td>
</tr>
</tbody>
</table>

Research needs with regard to indoor tanning have been identified. Table 6 lists some of these areas.

CONCLUSIONS

Engaging families in discussions about tanning beds represents a unique and one of few cancer prevention opportunities.

TABLE 6 Next Research Tasks

<table>
<thead>
<tr>
<th>Research Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Investigate the possibility that tanning is addictive in some individuals and whether early-life exposure to artificial UVR raised the risk of addiction.</td>
</tr>
<tr>
<td>- Determine revenues raised by the “tanning tax” and their allocation and explore redistribution to an educational fund.</td>
</tr>
<tr>
<td>- Track tanning industry claims and effect of the FTC consent order, particularly on industry Web sites.</td>
</tr>
<tr>
<td>- Establish the prevalence of teens tanning with their mothers.</td>
</tr>
<tr>
<td>- Establish where young women obtain indoor tanning most often, whether from indoor tanning salons, nonsalon sites such as beauty salons and fitness centers, or places of residence.</td>
</tr>
<tr>
<td>- Determine best ways for pediatricians to discuss salon tanning with teens and parents, including best ways to use electronic medical record technology to do so.</td>
</tr>
</tbody>
</table>
REFERENCES

7. Balk SJ; Council on Environmental Health; Section on Dermatology. Ultraviolet radiation: a hazard to children and adolescents. Pediatrics. 2011;127(3). Available at: www.pediatrics.org/cgi/content/full/127/3e791

9. Boniol M, Autier P, Boyle P, Gandini S. Cutaneous melanoma attributable to sunbed use: systematic review and meta-analysis. BMJ. 2012;345:e4757. Available at: www.bmj.com/content/345/bmj.e4757.full;rss=1&utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+bmj%252Frecent+&fd=1166163108.t%3B+0+&rst=153476498554788448

29. Gambichler T, Bader A, Vojvodic M, et al. Plasma levels of opioid peptides after sunbed...

60. Robinson JK. Consider tanning motivations and counsel accordingly. JAMA. 2010;303(20):2074–2075

PREDICTING THE FUTURE: I was having a conversation with a colleague of mine and asked, “Do you think you have changed?” She replied that she regretted some of her past decisions, but was now quite stable, had returned to her core values and interests, and was unlikely to make poor life decisions again. I thought her response interesting, but somewhat unsatisfying — after all, she was still a young woman and had most of her life in front of her. According to research reported in The New York Times (Science: January 3, 2013), however, my friend was not alone in her beliefs. Adults at all ages suffer from a syndrome dubbed “end of history illusion” in which they underestimate how much they will change in the future. Investigators measured the personalities, values, and preferences of more than 19,000 adults between the ages of 18 and 88, asking them to state how much they had changed over the past decade and predict how much they would change over the next 10 years. In all age groups, participants reported they had changed a lot over the past decade, but predicted much less change in the future. Seemingly, at each age point (and contrary to their own past experience), adults concluded that they have reached a stable era and are unlikely to undergo further change. Failing to take this inclination into account could potentially have financial ramifications, as adults expect currently highly valued items to retain that value over time, when in fact they do not. For example, adults knew that musical groups from the past had lost their appeal, but thought current favorite music groups were unlikely to do so. When researchers asked participants to report how much they would be willing to pay to attend a concert today by a favorite musical group of a decade ago, and how much they would pay to attend a concert of their current favorite musical group in 10 years’ time, respondents were willing to pay $80 to see a past favorite now, but $129 for a current favorite in the future. Why adults suffer from “end of history illusion” is not known. One theory is that we have a tendency to overestimate how wonderful we currently are. Another is that predicting the future takes more effort and insight than recalling the past. As for me, I look back aghast at some of the things I have done and wonder; just a bit, what I am doing now that will be viewed with similar chagrin in a decade.

Noted by WVR, MD
Teens and Indoor Tanning: A Cancer Prevention Opportunity for Pediatricians

Sophie J. Balk, David E. Fisher and Alan C. Geller

Pediatrics 2013;131;772

DOI: 10.1542/peds.2012-2404 originally published online March 18, 2013;

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://pediatrics.aappublications.org/content/131/4/772</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 55 articles, 11 of which you can access for free at: http://pediatrics.aappublications.org/content/131/4/772.full#ref-list-1</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s):</td>
</tr>
<tr>
<td></td>
<td>Hematology/Oncology http://classic.pediatrics.aappublications.org/cgi/collection/hematology_oncology_sub</td>
</tr>
<tr>
<td></td>
<td>Cancer/Neoplastic http://classic.pediatrics.aappublications.org/cgi/collection/cancer_neoplastic_sub</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: https://shop.aap.org/licensing-permissions/</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://classic.pediatrics.aappublications.org/content/reprints</td>
</tr>
</tbody>
</table>
Teens and Indoor Tanning: A Cancer Prevention Opportunity for Pediatricians
Sophie J. Balk, David E. Fisher and Alan C. Geller

Pediatrics 2013;131;772
DOI: 10.1542/peds.2012-2404 originally published online March 18, 2013;

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/131/4/772