A Randomized Clinical Trial of a Web-Based Tobacco Cessation Education Program

WHAT’S KNOWN ON THIS SUBJECT: Children exposed to second-hand smoke have high rates of hospitalization for respiratory illness. These visits represent a “teachable moment” when parental smokers can be motivated to quit. However, pediatric health care practitioners receive little training in tobacco cessation.

WHAT THIS STUDY ADDS: The Web-Based Respiratory Education About Tobacco and Health online training program was effective at increasing the provision of an effective tobacco cessation intervention by pediatric hospital-based respiratory therapists, registered nurses, and nurse practitioners to adult smokers.

OBJECTIVES: We report the results of a randomized clinical trial of a 3-hour, web-based, tobacco cessation education program, the Web-Based Respiratory Education About Tobacco and Health (WeBREATHe) program, for practicing pediatric respiratory therapists (RTs), registered nurses (RNs), and nurse practitioners (NPs).

METHODS: Two hundred fifteen RTs (n = 40), RNs (n = 163), and NPs (n = 12) employed at the Children’s Hospital of Philadelphia and the Children’s Hospital, University of Colorado at Denver, participated in this study. All study activities were completed online. After consenting, participants were randomly assigned to either the training (intervention) or delayed training (control) condition. The training condition consisted of a 3-hour continuing education unit course plus ongoing online resources. Participants were assessed at baseline, 1 week, and 3 months after enrollment.

RESULTS: Participants in the training condition were more likely to increase their tobacco cessation intervention behaviors than their delayed training counterparts (F[1, 213] = 32.03, P < .001). Training participants showed significantly greater levels of advise (F[1, 213] = 7.22, P < .001); assess (F[1, 213] = 19.56, P < .001); and particularly assist/arrange (F[1213] = 35.52, P < .001). In addition, training condition participants rated the program highly on measures of consumer satisfaction.

CONCLUSIONS: The WeBREATHe program is the first evidence-based education program in tobacco cessation designed specifically for pediatric RTs, RNs, and NPs. Engagement in WeBREATHe increased participants’ tobacco cessation-related behaviors. Pediatrics 2013;131:e455–e462

AUTHORS: Judith S. Gordon, PhD, E. Melinda Mahabee-Gittens, MD, MS, Judy A. Andrews, PhD, Steven M. Christiansen, BA, and David J. Byron, MD

Department of Family and Community Medicine, University of Arizona, Tucson, Arizona; Division of Emergency Medicine, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio; Oregon Research Institute, Eugene, Oregon, and InterVision Media, Eugene, Oregon

KEY WORDS: tobacco, smoking, cessation, continuing education, respiratory therapy, nursing

ABBREVIATIONS: CEU—continuing education unit
CHD—The Children’s Hospital, University of Colorado at Denver, Health Sciences Center
CHOP—Children’s Hospital of Philadelphia
NP—nurse practitioner
RN—registered nurse
RT—respiratory therapist
SHS—second-hand smoke exposure
WeBREATHe—Web-Based Respiratory Education About Tobacco and Health

This trial has been registered at www.clinicaltrials.gov (identifier HL083540).

www.pediatrics.org/cgi/doi/10.1542/peds.2012-0611
doi:10.1542/peds.2012-0611

Accepted for publication Oct 16, 2012

Address correspondence to Judith S. Gordon, PhD, Associate Professor, Department of Family and Community Medicine, University of Arizona, 1450 E. Cherry Ave, Tucson, AZ 85719. E-mail: judithg@email.arizona.edu

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275). Copyright © 2013 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

FUNDING: Supported by National Heart, Lung and Blood Institute grant 5R42HL083540. Funded by the National Institutes of Health (NIH).
There is mounting evidence that childhood second-hand smoke exposure (SHSe) can have pervasive and lasting effects on an individual’s health throughout the life span.1–4 SHSe is particularly of concern in children because it places them at increased risk for allergies, eczema, bronchiolitis, asthma, respiratory tract infections, recurrent ear infections, and middle ear disease.5–11 A recent investigation demonstrated that SHSe resulted in 10.9 million disability-adjusted life-years lost, with 61% of disability-adjusted life-years occurring in children worldwide.12 The highest disease burden caused by SHSe is from lower respiratory tract infections in children <5 years of age and asthma in children <15 years of age.12 Estimates of population-attributable risk for home SHSe in children range from 9% for asthma prevalence to 25% for hospital admissions caused by respiratory symptoms.13–15 Despite the known risks associated with SHSe, up to 41% of children in the United States are regularly exposed to SHSe or live in homes with a smoker,13,14 and this rate remains highest for very young children.15 In 2007, there were 121,000 emergency department visits with a primary diagnosis of asthma per 10 000 children <5 years of age and asthma in children <15 years of age.12 In 2009, asthma and pneumonia were the most common conditions requiring a hospital stay in children 1 to 9 years of age.16 In the 3- to 5-year-old group, there were 48 stays per 10 000 population for asthma, and asthma was the most common admission diagnosis in the 6- to 9-year-old group at 37 stays per 10 000 population.17 In 2007, 13.9 million visits for asthma were made to private physician offices (7.2 million for adults and 6.7 million for children 0–17 years of age) and 1.4 million visits to hospital outpatient departments (0.6 million for adults and 0.8 million for children 0–17 years of age). There were 1.75 million emergency department visits (1.11 million for adults and 0.64 million for children 0–17 years of age) and 456,000 asthma hospitalizations (299,000 for adults and 157,000 for children 0–17 years of age). There were 3447 deaths caused by asthma in 2007 (3262 among adults and 185 among children 0–17 years of age).18

When children are hospitalized for a respiratory illness, parents are aware that SHSe can exacerbate their child’s illness, and they are often motivated to quit smoking at this time.19,20 Because the visit focuses on the child’s overall health and the etiology of the medical problem, there may be higher parental motivation in this setting.21,22 The child’s respiratory illness may represent a “teachable moment” when parents are concerned about the effects of their smoking on their child’s health, and they may be willing to consider quitting smoking.19,20 Also, there are already a number of messages discouraging smoking in the hospital environment, which may reinforce the parent’s decision to quit.19,21

Hospital-based pediatric respiratory therapists (RTs), registered nurses (RNs), and nurse practitioners (NPs) are an untapped resource for providing advice and brief counseling to smokers. Given the high correlation between SHSe and respiratory illnesses, RTs, RNs, and NPs are in a position to motivate and assist smokers to quit, and there is a large body of evidence that shows they can be effective.23,24 In addition, the hospital visit provides a unique opportunity to bring up the issue of tobacco and its detrimental effect on the health of the smoker’s child.25

The American Association of Respiratory Care, the American Nursing Association, and others have a long history of discouraging tobacco use and advocating tobacco cessation counseling by RTs and nurses.26–32 Although RTs, RNs, and NPs are interested in addressing tobacco use with patients, few incorporate cessation into routine care.23,29,33–38 Many lack confidence in providing cessation advice and fear that they may antagonize and alienate the smoker.35,38 Provision of tobacco cessation intervention training and self-help materials can offset these concerns. After training and provision of patient materials, health care professionals in our previous work reported increased confidence in addressing tobacco use.40–42 We demonstrated significant reductions in reported tobacco use by patients receiving a tobacco cessation intervention delivered via their health care professional.40–42

Although workshops and training have been useful in disseminating effective interventions, there is a strong need for more disseminable training opportunities that are based on empirically validated programs. Online continuing education has been applied across a variety of professional disciplines, including medical practitioners, with resultant increases and retention in knowledge, changes in clinical practices, and overall acceptability by users.45–49 An interactive web-based instructional program that can be tailored to the user and offers video vignettes that model the intervention with varied populations in the user’s specific health care context may address these competing demands.50–52

We report on the results of a randomized clinical trial of a web-based, brief tobacco cessation intervention training program adapted from the Clinical Practice Guideline for Treating Tobacco Use and Dependence.53 The Web-Based Respiratory Education About Tobacco and Health (WeBREATHe) program aimed to teach pediatric RTs, RNs, and NPs an empirically based approach to motivating and assisting parental smokers to quit. The development and preliminary evaluation of the program has been described previously.54 We hypothesized that RTs, RNs, and NPs
who participated in the WeBREATHe program would show increases in their
tobacco cessation intervention behaviors, positive attitudes, and self-efficacy
in providing tobacco cessation interventions to their patients’ parents, and
decreases in their perceived barriers to providing these interventions.

METHODS

Inclusion Criteria

RTs, RNs, and NPs employed at 2 large urban children’s hospitals, Children’s
Hospital of Philadelphia (CHOP) and The Children’s Hospital, University of
Colorado at Denver, Health Sciences Center (CHD), were eligible to partici-
pate in the research study.

Recruitment

Four large children’s hospitals in the United States were identified through
professional contacts of one of the authors (MMG). That author made ini-
tial contact by e-mail, and the lead au-
thor (JG) made subsequent contacts by
e-mail and phone with hospital and
research staff to invite them to par-
ticipate in the study. All 4 hospitals
agreed to participate, but because of
budget limitations, only 2 sites (CHOP
and CHD) were selected to best repre-
sent different geographical regions
and patient populations. Study coordi-
nators at each participating hospital
recruited participants by sending e-
mail messages to RTs, RNs, and NPs,
posting flyers describing the research
study in staff areas, and making
announcements at staff meetings over
a 2-month period. Interested practitioners
were given a link to the WeBREATHe Web
site, where they were informed of the
study purpose, eligibility, and require-
ments and invited to complete an online
informed consent document and base-
line assessment. No other contact was
made with potential participants until
they were enrolled in the study.

Study Design

The study was approved by the In-
stitutional Review Boards at the Oregon
Research Institute (institutional review
board no. WeBREATHe; 12/16/10), CHOP
(institutional review board no. 091209),
and CHD (institutional review board no.
09-0557). Participants were enrolled
between December 2009 and January
2010; follow-up assessments were com-
pleted by May 2010. All participants com-
pleted an informed consent document.
Participants completed the informed
consent document and all assessments
online. After completion of the enroll-
ment process, participants were blindly
randomly assigned by the computer-
based program by using an automatic
algorithm to 1 of 2 study conditions: (1)
training (intervention), in which par-
ticipants were granted immediate ac-

cess to the WeBREATHe Web site; or (2)
delayed training (control), in which
participants were informed that they
would receive access to the WeBREATHe
Web site on completion of the final as-

cessment. Participants in the training
condition were instructed to use the
program for at least 3 hours over the
course of the following week. One week
was chosen as the time frame for pro-
gram completion for 2 reasons: (1)
study logistics required timely com-
pletion of the program and subsequent
assessments, and (2) we anticipated
that giving participants a specific short-
term goal would result in higher rates of
program completion. Participants re-
ceived up to 3 reminders to complete
the program on their own time during
that 1-week period. The WeBREATHe
continuing education program pro-
vided 3 continuing education units
(CEUs). Participants who passed the
continuing education test received 3
CEUs and a certificate of completion.
Participants were assessed at baseline,
1 week, and 3 months after enrollment.
The 1-week assessment was used to
gather immediate posttraining
outcomes and consumer satisfaction
data. The 3-month survey assessed
long-term outcomes. The time point for
this assessment was constrained by the
project time line and budget. Prompts to
complete the assessment were sent via
e-mail. After 3 prompts, nonresponders
were contacted via telephone. At the 1-
week assessment, 212 participants
(98.6%) responded, and 215 partic-
ipants (100%) completed the 3-month
assessment. More than 90% of partic-
ipants (n = 194) completed the surveys
online, with the remainder completing
via phone.

WeBREATHe Program Content

The WeBREATHe continuing education
program consists of 5 sections: (1) get-
ting started, which contains information
on program requirements and sugges-
tions for optimizing the learning ex-
perience; (2) help people quit smoking,
which provides step-by-step instructions
for providing the evidence-based Clinical
Practice Guidelines for Treating Tobacco
Use and Dependence, specifically
tailored for pediatric RTs, RNs, and NPs
via inclusion of data on the health
effects of SHSe on children, case studies
of children with SHSe-related illness,
scripts for use with smoking parents
presenting with their children for dif-
ferent types of treatment (eg, inpatient
versus emergency); and video vignettes
showing pediatric RTs, RNs, and NPs
interacting with parental smokers; (3)
resources, a repository for provider and
patient materials and links to other to-
bacco cessation resources on the in-
ternet; (4) Continuing Education (CE),
where the user must pass the posttest
and complete the course evaluation to
print their certificate of completion; and
(5) ask the expert, where users can post
questions and receive answers from
program instructors about intervening
with smokers. A detailed description of
the program and its development has
been published previously.
Measures

At baseline and all follow-up points, participants completed an assessment of demographics, previous tobacco cessation training, tobacco cessation–related knowledge, behaviors, attitudes, perceived barriers, and self-efficacy. Demographics included gender, race/ethnicity, age, education, occupation, and smoking status. Knowledge about program material was assessed via 10 items focusing on facts contained in the help people quit smoking section. Behaviors were measured by 15 items focusing on the “5 As” (ask, advise, assess, assist/arrange) recommended in the Clinical Practice Guidelines. Previous training was assessed by the following question: “In the last year, have you personally received any training in helping your patients/parents quit using tobacco?” Attitudes toward provision of adult tobacco cessation interventions in the pediatric setting were assessed by 9 items, barriers toward providing tobacco cessation services were measured by 7 items, and self-efficacy was measured by 6 items. All items were measured by using a 5-point scale. For behaviors, 1 = never and 5 = always; for attitudes and self-efficacy, 1 = strongly disagree and 5 = strongly agree; and for barriers, 1 = not a barrier and 5 = a strong barrier. At the 1-week assessment, participants also completed a 10-item consumer satisfaction survey to assess Web site design, organization, ease of use, and satisfaction with the program.

Analyses

Preliminary analyses found no differences between conditions on any variables at baseline. Preliminary factor analyses indicated that the items measuring attitudes, barriers, and self-efficacy grouped into their respective factors. However, items measuring the 5A behaviors grouped into 4 rather than 5 factors (ask, advise, assess, assist/arrange). Therefore, these 4 factors, rather than the original 5, were used as outcome variables. We used repeated-measures univariate analyses of variance to analyze change in each of the above outcomes as a function of condition. We also assessed change in all behavior factors combined. We used Mplus v6.1 (Mplus; Muthen and Muthen, Los Angeles, CA) for the Complier Average Causal Effect analysis (complier versus noncomplier for missing data analysis) and SPSS for Windows version 19 (IBM SPSS Statistics; IBM Corporation, Armonk, NY) for all other analyses.

RESULTS

Participant Retention and Characteristics

As displayed in Table 2, participants in the training condition changed their behaviors more than did those in the delayed training as assessed at the 3-month follow-up. Participants in the training condition were more likely to increase their behaviors (sum of all 4 factors) than their delayed training counterparts \(F(1, 213) = 32.03, P < .001; \eta^2 = 0.131 \). Examining each type of behavior, we found no change in the ask variable as a function of training, but there were significant changes in all other behaviors. Training condition participants showed significantly greater change in levels of advise \(F(1, 213) = 7.22, P < .001; \eta^2 = 0.030 \); assess \(F(1, 213) = 19.56, P < .001; \eta^2 = 0.085 \); and particularly assist/arrange \(F(1, 213) = 35.52, P < .001; \eta^2 = 0.143 \).

Attitudes, Barriers, and Self-Efficacy

As displayed in Table 2, participants in the training condition reported a greater increase in positive attitudes \(F(1, 213) = 27.90, P < .001; \eta^2 = 0.116 \),
a greater decrease in perceived barriers ($F[1, 213] = 31.46, P < .001; \eta^2 = 0.129$), and a greater increase in self-efficacy toward providing tobacco cessation interventions ($F[1, 213] = 42.89, P < .001; \eta^2 = 0.168$) than did participants in the delayed training condition. As shown in Table 2, these variables changed in the anticipated direction among participants in the training condition. However, participants in the delayed training condition had a slight increase in negative attitudes and perceived barriers and a decrease in self-efficacy over time.

DISCUSSION

The use of tobacco represents a significant public health problem both in mortality and morbidity. Hospitalizations for respiratory-related visits represent a teachable moment when parental smokers can be motivated to quit smoking to reduce the impact of SHSe on their child. Although national respiratory and nursing associations and others...
have long advocated for regular provision of tobacco cessation interventions by their members,26–33 pediatric RTs and RNs still do not use their patients’ visits to motivate parents to quit smoking.23–28 Our study provides additional evidence to support this claim. It also showed that, before enrolling in WebREATHe, participating RTs and RNs asked parents about their tobacco use only some of the time and almost never provided any type of assistance.

Findings from our study provide further evidence that pediatric RTs and RNs have had little to no recent training in helping adult smokers. In our sample, >95% of participants reported that they had not received any training in tobacco cessation in the 12 months before enrolling in our study. In addition, recent surveys indicate that it is likely that many of our participants received little or no education or training in evidence-based tobacco cessation skills (eg, the 5 As) as part of their baccalaureate or postbaccalaureate programs.31,55

Although workshops and training can be useful in teaching effective interventions, they are neither cost-effective nor easily disseminated.43,56 We sought to develop an online, evidence-based, training program to overcome these barriers. The WebREATHe program is the first effective, web-based instructional program to train pediatric RTs and nurses to provide brief, hospital-based tobacco cessation interventions to parents of pediatric patients. These results are particularly promising based on the relatively short amount of training (~3 hours) received by the participants and the fact that there was no personal contact with the participants, because all training and study activities were conducted entirely online.

Pediatric practitioners in the training condition significantly increased their tobacco cessation intervention behaviors, including advising parents to quit, assessing their readiness to quit, and providing evidence-based assistance, compared with practitioners in the delayed training condition at 3 months after enrollment. Compared with those who did not complete the program, the WebREATHe training program also had a significant effect on increasing pediatric practitioners’ positive attitudes toward intervening with tobacco-using parents and self-efficacy toward providing those services and decreasing perceived barriers in providing tobacco cessation interventions to their patients’ parents. Over the same period of time, participants in the delayed training condition showed more negative attitudes and perceived barriers and less self-efficacy. These findings could be a result of the effect of repeated testing, which was counteracted by the receipt of the program in the training condition.

The study provides evidence for the acceptability of tobacco cessation training among pediatric practitioners. Of the 2400 RNs and RTs employed at the research sites, 1488 (62%) were eligible and began the screening process. No contact was made with potential participants who began but did not complete the consent and survey process, which might have returned a higher number of participants. Although we anticipated enrolling 150 participants over a 3- to 4-month recruitment period, we enrolled >215 participants within 2 months and were forced to cap enrollment and turn away potential participants because of budgetary constraints. We enrolled 20% of all RTs and 7.5% of all RNs in the participating hospitals before capping enrollment. A higher percentage might have participated if the enrollment window had been extended. Another indicator of acceptability was that participants in the training condition reported high levels of program satisfaction, and many participants continued to use the WebREATHe Web site after they had completed the CE test.

Our study had several limitations. We had a relatively small sample size, which was not stratified by provider. Because we randomized by participant and not by institution, there was potential contamination between conditions. At the 1-week assessment, 67.6% of participants...
in the training condition reported that
they had discussed WeBREATHe training
with a colleague. It is unknown whether
content was discussed or merely the
opportunity to participate in the re-
search study. However, to our knowl-
dge, no delayed training participants
accessed the program before complet-
ing their 3-month assessment. There
was a lack of racial/ethnic diversity and
a lack of men in our sample. However,
our sample was representative of the
population of RTs and nurses in the
United States, which is predominantly
white (RTs = 75.1%; RNs = 83.2%) and
female (RTs = 62%; RNs = 93.4%).58,59
Finally, our final follow-up assessment
was conducted at 3 months after en-
rollment, which is considered to be a
short-term follow-up point.

CONCLUSIONS
The WeBREATHe program is the first
evidence-based continuing education
program in tobacco cessation designed
specifically for pediatric RTs and nurses.
Engagement in the WeBREATHe program
resulted in increases in tobacco
cessation-related behaviors among
pediatric RTs, RNs, and NPs. Given the
success of this study, we plan to eval-
uate it in a larger effectiveness trial,
with a longer-term follow-up, and if it
remains effective, disseminate the
WeBREATHe program on a much larger
scale.

REFERENCES
1. Rosen LJ, Noach MB, Winickoff JP, Hovell
MF. Parental smoking cessation to protect
young children: a systematic review and
Tobacco is a global paediatric concern. Bull
World Health Organ. 2010;88(1):2
3. Prokhorov AV, Winickoff JP, Ahluwalia JS,
et al; Tobacco Consortium, American Acad-
emy of Pediatrics Center for Child Health
Research. Youth tobacco use: a global per-
spective for child health care clinicians.
pediatrics.org/cgi/content/full/118/5/e890
4. Committee on Environmental Health; Com-
mitee on Substance Abuse; Committee on Adolescence; Committee on Native American
Child. From the American Academy of Pedi-
atrics: Policy statement—Tobacco use: a
(5):1474–1487
Environmental risk factors of rhinitis in early
278–284
ronmental tobacco smoke on atopic der-
matitis among children in Korea. Environ
Res. 2012;113:40–45
Prenatal and passive smoke exposure and
incidence of asthma and wheeze: system-
2012;129(4):735–744
8. Jones LL, Hassanien A, Cook DG, Britton J,
Leonardi-Bee J. Parental smoking and the
risk of middle ear disease in children: a
systematic review and meta-analysis. Arch
environmental tobacco smoke and children
10. Jones LL, Hashim A, McKeever T, Cook DG,
Britton J, Leonardi-Bee J. Parental and
household smoking and the increased risk
of bronchitis, bronchiolitis and other lower
respiratory infections in infancy: systematic
review and meta-analysis. Respir Res. 2011;
12:5
11. DiFranza JR, Masquel A, Barrett AM, Colosia
AD, Mahadevia PJ. Systematic literature re-
view assessing tobacco smoke exposure as
a risk factor for serious respiratory syncytial
virus disease among infants and young
12. Obeng M, Jaakkola MS, Woodward A, Peruća
A, Prüss-Ustün A. Worldwide burden of dis-
ease from exposure to second-hand smoke:
a retrospective analysis of data from 192
countries. Lancet. 2011;377(9760):139–146
13. Tsai CH, Huang JH, Hwang BF, Lee YL.
Household environmental tobacco smoke
and risks of asthma, wheeze and bronchitic
symptoms among children in Taiwan. Respir
Res. 2010;11:11
14. King K, Martynenko M, Bergman MH, Liu YH,
Winickoff JP, Weitzman M. Family composition
and children’s exposure to adult smokers in
at: www.pediatrics.org/cgi/content/full/123/4
e559
15. Centers for Disease Control and Prevention
(CDC). Disparities in secondhand smoke
exposure—United States, 1988-1994 and
of cigarette smoking—United States, 1988–
2010. MMWR Morb Mortal Wkly Rep. 2011;60:
335–339
17. Healthcare Cost and Utilization Project (HCUP).
Facts and Figures. Rockville, MD: Agency for
Healthcare Research and Quality; 2009
Prevalence, Health Care Use, and Mortal-
Health Statistics Reports: No 32. Hyattsville,
MD: National Center for Health Statistics;
2011
19. Winickoff JP, Hillis VJ, Palfrey JS, Perrin JM,
Rigotti NA. A smoking cessation intervention
for parents of children who are hospitalized
for respiratory illness: the stop tobacco
140–145
20. Ralston S, Roohi M. A randomized, con-
trolled trial of smoking cessation counsel-
ing provided during child hospitalization
2008;43(6):561–566
21. Winickoff JP, Hibberd PL, Case B, Sinha P,
Rigotti NA. Child hospitalization: an oppor-
tunity for parental smoking intervention.
22. Halterman JS, Borrelli B, Conn KM, Tremblay
P, Blaakman S. Motivation to quit smoking
among parents of urban children with
asthma. Patient Educ Couns. 2010;78(2):
152–155
23. Goodfellow LT, Waugh JB. Tobacco treat-
ment and prevention: what works and why.
Respir Care. 2009;54(8):1082–1090
24. Rice VH, Stead LF. Nursing interventions for
smoking cessation. Cochrane Database
Syst Rev. 2008;CD001188
25. Rigotti NA, Munafò MR, Murphy MF, Stead
LF. Interventions for smoking cessation in
hospitalised patients. Cochrane Database
Syst Rev. 2012;CD001837
nurses. Available at: www.tobaccofreenurses.
org/. Accessed February 9, 2012

Downloaded from by guest on August 30, 2017
28. Bialous SA, Sarna L. Sparing a few minutes for tobacco cessation: if only half of all nurses helped one patient per month quit smoking, more than 12 million smokers would overcome their addictions every year. Am J Nurs. 2004;104(12):54–60
57. Campbell DT, Stanley JC. Experimental and Quasi-Experimental Design for Research. Chicago, IL: Rand McNally; 1966
58. Shaw RC, Traynor C, Benavente JL. Introduction to All AARC Respiratory Therapist Human Resources Studies. Irving, TX: American Association for Respiratory Care; 2009
A Randomized Clinical Trial of a Web-Based Tobacco Cessation Education Program

Judith S. Gordon, E. Melinda Mahabee-Gittens, Judy A. Andrews, Steven M. Christiansen and David J. Byron

Pediatrics 2013;131;e455; originally published online January 14, 2013;
DOI: 10.1542/peds.2012-0611

Updated Information & Services
including high resolution figures, can be found at:
/content/131/2/e455.full.html

References
This article cites 48 articles, 10 of which can be accessed free at:
/content/131/2/e455.full.html#ref-list-1

Citations
This article has been cited by 1 HighWire-hosted articles:
/content/131/2/e455.full.html#related-urls

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):

Pulmonology
/cgi/collection/pulmonology_sub

Respiratory Tract
/cgi/collection/respiratory_tract_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml
A Randomized Clinical Trial of a Web-Based Tobacco Cessation Education Program
Judith S. Gordon, E. Melinda Mahabee-Gittens, Judy A. Andrews, Steven M. Christiansen and David J. Byron

Pediatrics 2013;131;e455; originally published online January 14, 2013;
DOI: 10.1542/peds.2012-0611

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/131/2/e455.full.html