CLINICAL REPORT

Relief of Pain and Anxiety in Pediatric Patients in Emergency Medical Systems

Joel A. Fein, MD, MPH, William T. Zempsky, MD, MPH, Joseph P. Cravero, MD, and THE COMMITTEE ON PEDIATRIC EMERGENCY MEDICINE AND SECTION ON ANESTHESIOLOGY AND PAIN MEDICINE

KEY WORDS
pain, stress, anxiety, analgesia, opiates, topical anesthesia

ABBRévIATIONS
ED—emergency department
EMS—emergency medical services
IV—intravenous
NPO—nil per os

This document is copyrighted and is property of the American Academy of Pediatrics and its Board of Directors. All authors have filed conflict of interest statements with the American Academy of Pediatrics. Any conflicts have been resolved through a process approved by the Board of Directors. The American Academy of Pediatrics has neither solicited nor accepted any commercial involvement in the development of the content of this publication.

The guidance in this report does not indicate an exclusive course of treatment or serve as a standard of medical care. Variations, taking into account individual circumstances, may be appropriate.

www.pediatrics.org/cgi/doi/10.1542/peds.2012-2536
doi:10.1542/peds.2012-2536

All clinical reports from the American Academy of Pediatrics automatically expire 5 years after publication unless reaffirmed, revised, or retired at or before that time.

PEDIATRICS (ISSN Numbers: Print, 0631-4005, Online, 1098-4275).
Copyright © 2012 by the American Academy of Pediatrics

abstract

Control of pain and stress for children is a vital component of emergency medical care. Timely administration of analgesia affects the entire emergency medical experience and can have a lasting effect on a child's and family's reaction to current and future medical care. A systematic approach to pain management and anxiolysis, including staff education and protocol development, can provide comfort to children in the emergency setting and improve staff and family satisfaction. Pediatrics 2012;130:e1391–e1405

BACKGROUND

A systematic approach to pain management is required to ensure relief of pain and anxiety for children who enter into the emergency medical system, which includes all emergency medical services (EMS) agencies, interfacility critical care transport teams, and the emergency department (ED).1 The administration of appropriate analgesia in children varies by age as well as by training of the ED team (which includes physicians, nurses, physician assistants, and nurse practitioners), however, and still lags behind analgesia provided for adults in similar situations.2 Furthermore, neonates are at highest risk of receiving inadequate analgesia.3,4

Encouragingly, improvements in the recognition and treatment of pain in children have led to changes in the approach to pain management for acutely ill and injured pediatric patients.5 Studies have shown an increase in opiate use in children with fractures.6–8 Recent advances in the approach and support for pediatric analgesia and sedation, as well as new products and devices, have improved the overall climate of the ED for patients and families in search of the “ouchless” ED.5,9 Increased parental education regarding pain and sedation, physician comfort and desire to enhance patient satisfaction, and a quest to satisfy accreditation regulations have appropriately driven this effort. System-wide approaches for pain management awareness and strategies work best if they are woven into the fabric of the emergency medical system through education and protocol development. The purpose of this report was to provide information to optimize the comfort and minimize the distress of children and families as they are cared for in the emergency setting.

STATEMENT OF THE PROBLEM

Barriers to adequate pain control for children in the ED and in out-of-hospital emergency care settings include difficulty in assessing pain in
young patients, unfamiliarity with new products and techniques, fear of medication adverse effects, staffing limitations, and time constraints. Children’s pain is underestimated because of the underuse of appropriate assessment tools and the failure to account for the wide range of children’s developmental stages. Analgesic agents typically used for pain in other settings might not be used in the ED because of concerns regarding masking of symptoms and prevention of appropriate diagnoses as well as misconceptions or personal biases by physicians or parents against using stigmatized medications like opiates. Topical anesthetics may be underused because of concerns regarding delay in definitive treatment, cost, or lack of availability. In addition to the child’s developmental level, culture, ethnicity, and race affect pain management from both a patient and physician perspective. It is clear that cultural differences can contribute to how an individual or family manifests behavioral distress and anxiety, however, no predictable patterns have emerged with regard to a consistent pain experience within ethnic groups.

Studies have noted that Hispanic and black individuals with long-bone fractures were less likely to receive analgesics than were non-Hispanic white individuals. A review of the National Hospital Ambulatory Medical Care Survey from 1992 to 1997 demonstrated that among patients with fractures, black children covered by Medicaid were least likely to receive parenteral sedation and analgesia. Opiod prescribing for painful conditions has increased for all patients, but white patients continue to be more likely to receive an opioid prescription than black, Hispanic, or Asian patients.

Although few physicians still believe that children do not feel pain the same way adults do and that pain has no untoward consequences, there is a growing recognition of how even minor painful procedures, such as needle sticks, can affect a child’s longer-term emotional well-being.

Inadequate sedation and pain control can worsen a child’s reaction to subsequent, possibly even nonpainful procedures. Neonates who undergo procedures with inadequate analgesia have long-standing alterations in their response to and perceptions of painful experiences.

In the ED, children often present with a constellation of symptoms but no final diagnosis; they are usually unknown to the treating physician, have a wide range of medical or surgical problems, and are unlikely to be fasting on arrival. These factors make their assessment and the selection of appropriate analgesic intervention more complicated. As well, the emergency setting can be a busy, fast-paced environment in which heightened patient and parental anxiety increases the perception of pain and makes its treatment more difficult.

Optimal pain management requires a thorough understanding of pain assessment and management strategies. Education in pain management is a recent emphasis for hospitals as well as regulatory agencies, such as The Joint Commission: “Each and every patient has a right to the assessment and management of pain.”

NEW INFORMATION
Setting the Stage for Relief of Pain and Anxiety

Physicians can begin to address pain and anxiety as soon as a child comes in contact with the EMS system. Prehospital EMS providers typically receive relatively little pain management instruction. The development of pain assessment and management protocols specifically for prehospital EMS providers, along with educational initiatives, can improve pain management in the field. Several adult studies and 1 pediatric trial show that analgesics, such as opiates and tramadol hydrochloride, can be used in prehospital protocols to decrease pain scores without causing respiratory depression. Alternative delivery systems, such as transmucosal medications or inhaled nitrous oxide, could offer pain control without requiring intravenous (IV) access, providing advantages in the field as well as in the hospital setting. Some EMS systems have implemented a “toolbox” of distraction equipment on units as an adjunct to providing pain relief in the anxious, uncomfortable child.

Assessment and Management of Pain, Stress, and Anxiety in the ED

The Environment

It is clear that there is a relationship between anxiety and perceived pain in children and adults. The creation of an appropriate environment is essential to minimize the pain and distress of a child’s ED visit. Ideally, each child should be placed in a private room. Even in a general ED, there can be a dedicated pediatric area that provides a child-friendly, calming environment. Colorful walls, pictures on the ceiling, and a collection of toys and games will minimize fear induced by this strange setting.
Stress management and emotional support are essential to providing a comfortable environment for the child and have been shown to reduce anxiety in older children as well as parental perception of pain in younger children. Adequate preparation has been shown to decrease anxiety and increase a child’s coping before a minor procedure or surgery. Distraction can range from simple techniques, such as a bubble blower or pinwheel used by the child during a painful injection, to techniques that require more time and training, such as hypnosis. Structural changes, such as outfitting each procedure room with equipment that can provide videos and music, and distraction stations equipped with bubble columns, light wands, and imagery projectors, can be helpful in engendering a feeling of safety and comfort in young children. A child life specialist based in the ED has the ability to (1) decrease anxiety and pain perception using developmentally appropriate education and preparation to patients and families; (2) teach the child and staff simple distraction techniques, deep breathing, progressive relaxation, or guided imagery; (3) help the child to develop and execute coping plans during difficult events in the ED; (4) educate the child about the ED environment and his or her diagnosis; and (5) support family involvement in the child’s care. The child life specialist has an important role. He or she is one of a few professionals in the emergency setting who is not in a position to cause emotional or physical pain to the child; however, nurses, physicians, and ancillary staff also share in this responsibility and can learn from and teach each other these techniques. Optimally, the treatment plan for each child should be communicated to the entire medical care team with specific regard to the environmental and behavioral management of anxiety in the emergency medical setting. This includes teaching children what to expect during a procedure or during their visit, showing them specific medical supplies they will be using, offering them choices when appropriate, giving them a role or a job during a procedure or hospital visit, and using distractions. Creating a relaxing environment can help a child to feel more comfortable and less stressed.

Allowing (but not requiring) family presence during painful procedures also may be of benefit. Although there is no evidence that family presence decreases pain, their presence for procedures can decrease child distress. Family presence does not usually increase anxiety of the child or decrease the procedure success rate of experienced physicians; however, it is important to monitor parental responses to limit the adverse effects on all parties. In addition, involving the parent as a coach for the child during the procedure is useful in reducing anxiety and distress.

Pain Assessment in the ED

The Joint Commission standards include mandatory pain assessments for all hospital patients. Pain is, by nature, a subjective experience and is influenced by social, psychological, and experiential factors. For example, patients who experience chronic pain may not report the same pain level or exhibit the same facial cues and vocalizations as those who are new to the pain experience. Pain assessment, which is obviously the first step toward appropriate treatment, can, therefore, be more complex than just obtaining a single pain score; it is also essential to pay attention to changes in pain scores in response to treatment. The current clinical standard for pain assessment is a self-report scale. Simple numerical scales, such as verbally grading pain from 0 to 10, are often used in adults; although there is evidence that this technique may be accurate in older children with moderate to severe pain, it may be less accurate for those with abdominal pain. Several well-validated scales exist for children as young as 3 years to report their own pain level. The revised FACES pain scale, the Wong-Baker Faces scale, and the 10-cm Visual Analog Scale have been used successfully in many EDs caring for children. Other dimensions can be added to the visual analog scale, such as height, width, and color, and are valid methods for assessment of acute pain in children. For those who are unable to use self-report scales, behavioral scales can be combined with an evaluation of the patient’s history and physical findings to assess the level of a child’s pain. Pain in a neonate can be evaluated using the Neonatal Infant Pain Scale and pain in infants, young children, and those with cognitive impairment can be assessed using the FLACC (face, legs, activity, crying and consolability) scale. It must be noted that few, if any, scales have been validated in the prehospital setting.

Pain Management in the ED

Pain assessment should occur routinely at the triage desk along with vital signs; however, reassessment during the ED stay is imperative to determine treatment effect. In addition, physicians should take into account the possibility that combining multiple minor procedures may produce as much stress and discomfort as a single major procedure.

Controlling Pain Related to Needle Sticks and Other Minor Procedures

Patients with less acute conditions also may require analgesia. Protocols should be developed to facilitate the delivery of appropriate medications, such as acetaminophen, ibuprofen, or oral opiates, to these patients (Table 1).
Topical anesthetics can be placed proactively to control the pain associated with placement of IV catheters and other minor procedures. For example, in 1 inner-city pediatric ED, 90% of patients requiring IV access did not undergo this procedure until at least 60 minutes after triage.108 A prediction model was developed whereby the patient’s chief complaint and medical history, combined with an experienced triage nurse assessment, determined with some accuracy which patients had a high probability of requiring IV access.109 These findings could be adapted to develop topical anesthetic protocols for painful procedures in other EDs, taking into account their patient volume, acuity, and flow characteristics (Table 2). Some topical anesthetics have been developed that produce anesthesia more rapidly than eutectic mixture of local anesthetics (EMLA; AstraZeneca, Wilmington, DE). A topical liposomal 4% lidocaine cream (LMX4; Ferndale Laboratories, Ferndale, MI) provides anesthesia in approximately 30 minutes.110111 Heat-activated systems have shortened the time required to as low as 10 to 20 minutes for IV insertion pain relief.112 Topical anesthetics also have been reported to improve procedural success rates, likely because of decreased movement leading to better accuracy.113114 When the procedure cannot be delayed or needs to take place in the prehospital setting, other techniques can be used; intradermal lidocaine injection as well as intradermal saline with benzyl alcohol preservative decreases the pain of venous cannulation without affecting procedural success rate.115118 Needle-free injection systems using either powder or liquid jet injection reduce the onset time even more.106120123 Vapocoolant sprays that have immediate onset of action have been found to be effective in reducing venipuncture pain in adults; however, they are less effective in children, likely because of their intolerance of the unpleasant cold feeling resulting from the required administration time.124125 Recent innovations include a vibrating device that, when applied to the proximal extremity over a cold pack, may decrease the pain of venipuncture and immunizations by taking advantage of the “gate” theory of pain. However, further study is required to determine the comparative efficacy of this technique.

Similar protocols should be developed for topical anesthetic placement for laceration repair at triage (Table 3). Laceration repair should be completed with an emphasis on minimizing pain and anxiety. Several topical anesthetic/vasoconstrictor combinations, such as lidocaine, epinephrine, and tetracaine, which can be made by the in-hospital pharmacy as a liquid or gel preparation, provide excellent wound anesthesia in 20 to 30 minutes.126127 EMLA cream also provides topical anesthesia for laceration repair, although it is not approved by the US Food and Drug Administration for this purpose.128 Premixed solutions with an emphasis on minimizing pain and anxiety. Several topical anesthetic/vasoconstrictor combinations, such as lidocaine, epinephrine, and tetracaine, which can be made by the in-hospital pharmacy as a liquid or gel preparation, provide excellent wound anesthesia in 20 to 30 minutes.126127 EMLA cream also provides topical anesthesia for laceration repair, although it is not approved by the US Food and Drug Administration for this purpose.128129 Tissue adhesives, such as octyl cyanoacrylate, provide essentially painless closure for low-tension wounds.130131 Steri-Strips (3M, St Paul, MN) provide similar painless closure and are less expensive than currently available tissue adhesives.132 Absorbable sutures should be considered for facial wounds that must be sutured to avoid the pain and anxiety produced by suture removal.133134

Table 1: Triage Oral Analgesic Administration Guidelines

| Purpose | To provide analgesic therapy to patients presenting to triage with a complaint of pain |
| Procedure | 1. Assess pain score using a validated tool
2. Immediately triage to a treatment room all patients with severe pain as assessed by triage nurse and consideration of pain score
3. For those not requiring immediate evaluation with pain score 3 (0–10 scale) or chief complaint consistent with pain, consider administration of oral analgesic
4. Assess recent analgesic use |

Contraindications

1. Allergy to analgesic (consider alternative)
2. Ibuprofen (avoid if the patient has aspirin allergy, anticipated surgery, bleeding disorder, hemorrhage, or renal disease)
3. Acetaminophen (avoid if the patient has hepatic disease or dysfunction)

Medications

1. Oral oxycodone
2. Acetaminophen (avoid if the patient has hepatic disease or dysfunction)
3. Ibuprofen (avoid if the patient has renal disease)

TABLE 2: Guidelines for Use of Topical Lidocaine in the ED

Topical anesthetics should be considered in any patient who has a high likelihood of undergoing a non-emergent invasive procedure on intact skin in the ED. These include the following:

- Intravenous line placement or venipuncture
- Lumbar puncture
- Abscess drainage
- Joint aspiration

Contraindications:

- Emergent need for IV access
- Allergy to amide anesthetics
- Nonintact skin
- EMLA only. Recent sulfonamide antibiotic use (trimethoprim-sulfamethoxazole, erythromycin-sulfisoxazole); congenital or idiopathic methemoglobinemia

The topical anesthetic dose should be lower for patients <12 mo old or weighing <10 kg Placement of topical lidocaine:

- Intravenous line placement
- Topical lidocaine should be placed in at least 2 sites over veins amenable to placement of an IV line, preferably judged by the nurse placing the IV line.
- Care should be taken to avoid mucous membrane contact or ingestion
- Lumbar puncture Placement of topical lidocaine for lumbar puncture should be considered as soon as the decision is made to perform a lumbar puncture; accurate placement may require consultation with the clinician performing the procedure

Liposomal topical lidocaine reaches full effectiveness in 30 min, heated topical lidocaine in 20 min, EMLA reaches full effectiveness in 60 min.
TABLE 3 Guidelines for Use of LET (a Topical Anesthetic for Open Wounds)

<table>
<thead>
<tr>
<th>Eligibility</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>• LET can be applied to simple lacerations</td>
<td>• LET should be placed according to standard ED procedure; time of placement should be documented on triage sheet.</td>
</tr>
<tr>
<td>• LET can be applied to complex or deeper</td>
<td>• Dose: 3 mL for children > 17 kg, 0.175 mL/kg in children < 17 kg²</td>
</tr>
<tr>
<td>lacerations that may require supplemental</td>
<td>(1) Place LET on open wound and cover with occlusive dressing or place cotton ball soaked with LET solution into wound.</td>
</tr>
<tr>
<td>subcutaneous anesthetic administration.</td>
<td>(2) Allow LET to soak into wound for 10–20 min or until wound edges appear bled.</td>
</tr>
</tbody>
</table>

LET, lidocaine, epinephrine, and tetracaine. ² Based on maximum dose of 5 mg/kg of lidocaine.

Recent studies have suggested methods by which neonatal distress during painful procedures can be minimized. Sucrose has been found to decrease the response to noxious stimuli, such as heel sticks and injections, in neonates and has even been demonstrated to reduce subsequent crying episodes during routine care, such as diaper changes.¹⁴⁹–¹⁵¹ This effect seems to be strongest in the newborn infant and decreases gradually over the first 6 months of life. Nursing protocols that allow for the use of sucrose before painful procedures are in place at many hospitals (Table 4). A 12% to 25% sucrose solution that is made by the pharmacy or is available commercially can be used (Sweet-Ease, Children’s Medical Ventures, Norwell, MA). The use of a pacifier alone or in conjunction with sucrose also has been shown to have analgesic effects in neonates undergoing routine venipuncture.¹⁶² Skin-to-skin contact of an infant with his or her mother and breastfeeding during a procedure decrease pain behaviors associated with painful stimuli.¹⁶³,¹⁶⁴ Available evidence supports the use of local and topical anesthetic for lumbar puncture in neonates.¹⁵⁶,¹⁶⁶ Protocols can allow for the timely placement of topical anesthetic, or injected buffered lidocaine can be used at the site of needle insertion before the procedure. Concerns over the increased difficulty of lumbar puncture after local anesthetic use have proved to be unfounded, and one study even demonstrated improved success with the use of topical anesthetic.¹¹³,¹⁶⁵,¹⁶⁷ Pain can be decreased in neonates by the elimination of heel sticks and intramuscular injections. Venipuncture seems to be less painful than heel lancing for obtaining blood for diagnostic testing.¹⁶⁸ When the intramuscular route is necessary, topical anesthetic should be used.¹⁶⁹ Use of distraction techniques discussed previously, ice, and less painful injection techniques can also be efficacious.¹⁷⁰–¹⁷³ The use of lidocaine as the diluent for ceftriaxone can decrease the pain of intramuscular injection.¹⁷⁴

Does the Appropriate Use of Analgesics Make Evaluation More Difficult?

There is no evidence that pain management masks symptoms or clouds mental status, preventing adequate assessment and diagnosis. For patients with abdominal pain, several adult studies have shown that pain medications such as morphine can be used without affecting diagnostic accuracy.¹⁷⁵–¹⁷⁹ Pediatric studies have demonstrated similar findings.¹⁷⁰,¹⁸⁰ Clinical experience suggests that the use of pain medication makes children more comfortable and makes the examination of the patient’s abdomen and diagnostic testing (such as ultrasonography) easier, thus aiding in diagnosis. In the child who has suffered multisystem trauma, small titrated doses of opiates can be used to provide pain relief without affecting the clinical examination or the ability to perform neurologic assessments.¹⁸¹,¹⁸² The development of pain protocols can improve the management of children...

TABLE 4 Guidelines for Use of Sucrose in the ED

<table>
<thead>
<tr>
<th>Indications</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Use as an adjunct for limiting the pain</td>
<td>1. Administer 2 mL of 25% sucrose solution by syringe into the infant’s mouth (1 mL in each cheek) or allow infant to suck solution from a nipple (pacifier) no more than 2 min before the start of the painful procedure.</td>
</tr>
<tr>
<td>associated with procedures such as heel sticks,</td>
<td>2. Sucrose seems to be more effective when given in combination with a pacifier; nonnutritive suck also contributes to calming the infant and decreasing pain-elicited distress.</td>
</tr>
<tr>
<td>venipuncture, IV line insertion, arterial</td>
<td>Contraindications: None</td>
</tr>
<tr>
<td>puncture, insertion of a Foley catheter,</td>
<td></td>
</tr>
<tr>
<td>lumbar puncture in neonates and infants</td>
<td></td>
</tr>
</tbody>
</table>

adequate administration times.¹⁴⁶
who suffer major trauma.183 Regional anesthesia should also be considered for patients who have injuries that are amenable to these techniques.184,185

Additional studies evaluating these practices in pediatric patients are necessary but should not delay the development of protocols for the use of analgesics in patients with acute abdominal pain and multisystem trauma in the ED and even the prehospital setting.

\textit{Analgesia in the ED and EMS Setting}

Optimal pain management requires expeditious pain assessment and rapid administration of systemic opioid pain medication to patients in severe pain. This may occur through various routes of administration, including transmucosal or IV routes. The IV route allows for rapid relief of pain and drug titration; the intramuscular route is less preferred, because it does not allow for medication titration and is painful at the time of delivery and for days afterward. Adjunctive pain medications, such as nonsteroidal antiinflammatory drugs, can be used judiciously in children with pain; antiplatelet activity and gastrointestinal tract and renal toxicity are rare but recognized adverse effects. Oral opiates and nonsteroidal antiinflammatory drugs are appropriate for mild to moderate pain if the patient has no contraindications to receiving oral medications. Alternative routes of medication administration, including oral, intranasal, transdermal, and inhaled routes, should be used when appropriate and may offer rapid relief of pain.186 Studies of transmucosal, aerosolized, and inhaled fentanyl show analgesic action commensurate with IV opioids.187–189 Transmucosal administration may be appropriate and useful in the prehospital setting as well.190 Intranasal delivery, despite demonstrating more rapid onset of action, also may be less tolerated because of burning of the nasal mucosa during administration.54,191 Drug delivery into the central nervous system is greatly enhanced with the use of an atomizer that distributes the medication more evenly to the mucous membranes.192–194 Because adverse events are still possible when this mode of opiate administration is used, care should be taken when using adjunctive medications, such as benzodiazepines. In addition, if there is no IV access, it is prudent to prepare for alternative methods of administration for reversal agents. Pain medication should be provided in the ED as well as on discharge, even for those with mild to moderate pain. Patients and families should get specific instructions regarding dose and duration of use. Clear, written instructions should be provided for families regarding the after care of children who have received procedural sedation. Pain medication should be recommended on an around-the-clock basis for anyone in whom moderate pain is anticipated.

The use of sedative hypnotic medication may be required to reduce pain and distress for children undergoing procedures in the ED. Unfortunately, pain and anxiety are often difficult to differentiate in infants and toddlers and even in school-aged children. Although many procedures can be performed relatively painlessly with the use of a topical or local anesthetic, this does not obviate the use of pharmacologic agents to decrease the anxiety and stress in children undergoing procedures in the ED, especially when the child needs to remain still to ensure the success of the procedure. When the procedure is expected to be painful, the agents used should have analgesic properties as well. Emergency physicians are increasingly using short-acting medications such as propofol, alone or in combination with ketamine, for procedural sedation in children.195,196 Published reports involving adult patients and recently published experiences with children demonstrate that, when applied using careful protocols and in a setting of experienced sedation teams, propofol, either alone or in combination with ketamine, can be used safely and effectively for sedation in children.195,197–205 Benzodiazepines, particularly rapidly effective but relatively short-acting ones, such as midazolam, are also helpful in the prehospital and ED settings. Nitrous oxide is a potent analgesic that does not require venous access and is available in some EDs.48–53 Nitrous oxide should be used in conjunction with appropriate sedation guidelines and avoided in patients with pneumothorax, bowel obstruction, intracranial injury, and cardiovascular compromise.52,53 Nitrous oxide has many potential applications, including anxiolysis for procedures such as IV catheter insertion and laceration repair; pain control for burn débridement, and fracture and dislocation reduction; care should be taken if opiates are used concurrently so as not to reduce respiratory drive.206 The most important part of providing safe sedation for children is the establishment of appropriate sedation systems and sedation training programs with credentialing guidelines for providers that specifically address the core competencies required for the care of pediatric patients.207,208

\textit{Pain Considerations for Children With Developmental Disabilities}

Children with developmental disabilities, particularly those with severe neurologic involvement, provide additional challenges to parents and EMS and ED personnel in management of acute pain and its associated anxiety. For many children, previous painful experiences in similar settings add to stress of the acute incident. Learning about the child’s anticipated response...
and previous experiences from parents, primary care physicians, and specialists informs the emergency physician and staff of useful supportive technique.209–211 Parental understanding and awareness of subtle indirect behaviors or emotional shifts are often critical adjuncts in the assessment process of the child’s sense of comfort and wellbeing. Child life specialists, as previously mentioned, are knowledgeable of distinct coping strategies to assist children with developmental disabilities and children who are more sensitive to sights and sounds. Myths of pain insensitivity or indifference must be actively avoided.212–214 Pain modulation can vary widely, related to neurotransmitter function differences within the brain or along the injured spinal cord, thereby altering the perception and response to pain in children with previous injuries.215–217 Cognitive impairments can affect both understanding and coping mechanisms, making self-report particularly challenging in young people with motor and/or cognitive differences. Maladaptive behaviors, heightened anxiety, and uncommon coping styles can add further complexity to the assessment process. The Non-communicating Children’s Pain Checklist–Revised offers a validated visual method for staff members to assess and reassess children 3 to 18 years of age.216–218 In addition, the Individual Numeric Rating Scale has been shown to be effective in children with developmental disabilities. In general, the approaches to medication use for pain and anxiety should hold true for children with developmental disabilities; some children, however, show altered sensitivity to medications and may be taking medications that interact with common pain medications.219

Sedation Policies and Protocols in the ED

Physicians, physician assistants, and nurse practitioners who administer sedation and analgesia should have proven training and skills and ongoing education in the management of pediatric airways and resuscitation, especially in the use of face mask ventilation and laryngeal mask airways. Emergency physicians and other nonanesthesiologist physicians with appropriate training have demonstrated the ability to safely and effectively provide moderate and deep sedation and dissociative anesthesia, allowing for the timely performance of procedures and rapid relief of pain and anxiety.202,207,208,220,221 A recent large prospective study of 131,751 elective pediatric sedation encounters demonstrated no differences in serious adverse outcomes (ie, death, ICU admissions, aspiration events) between those performed by anesthesiologists and those performed by other pediatric medical subspecialists practicing in highly organized sedation systems.222 Although the reported incidence of serious complications is low, it is imperative to develop ongoing policies that establish informed consent and close monitoring of these patients. A critical component of any sedation protocol is to require a trained observer to be solely responsible for monitoring the patient while the procedure is being performed.223,224 Techniques such as noninvasive end-tidal carbon dioxide monitoring allow for more consistent detection of bradypnea, hypopnea, and apnea in sedated children and are being recognized increasingly as an essential part of the sedation armamentarium225,226; however, this is not a replacement for direct visualization of respiratory effort. Current guidelines from the American Academy of Pediatrics, American Society of Anesthesiologists, and American College of Emergency Physicians recommend a structured evaluation of children that allows risk stratification before beginning sedation, thereby reducing the risk of complications in the pediatric age group.223,227–229 This evaluation should include issues such as preexisting medical conditions, focused airway examination, and consideration of nil per os (NPO) status. NPO guidelines for children receiving sedation in the ED are controversial. Many children who have received procedural sedation for emergencies have not fasted in accordance with published guidelines for elective procedures, and this variation was not associated with adverse outcomes.230–232 Current data are insufficient to determine the length of time that constitutes safety with regard to NPO status.233–235 Recently published guidelines recommend that the physician consider the urgency of the procedure, targeted depth of sedation, risk level of the patient, and timing of most recent solid food intake to determine the safety profile for each patient.244

Discharge criteria also are critically important for children undergoing sedation in the ED. Patients who receive sedatives with long half-lives, such as chloral hydrate or pentobarbital, are at particular risk of adverse events after discharge, either during transportation or in their homes after the procedure.245 Strict adherence to criteria that require a child to be “back to baseline” in terms of consciousness, or adaptation of newer “maintenance of wakefulness” criteria, are critical to optimize safety surrounding the sedation process.246

Quality Improvement Programs

Any ED that provides treatment of children should have a quality improvement program that reviews, at regular intervals, sedation and pain management practices in pediatric patients. Transport team and pre-hospital EMS providers are essential partners in this ongoing review and should consider establishing internal review policies as well. Many hospitals use a multidisciplinary committee to...
help interpret the data emanating from these reviews and then suggest system-
wide protocol and educational initia-
tives. Indicators that should be evalu-
ated include the use of validated pain
scores; appropriate analgesics for
specific disease states (whether severe
or mild to moderate pain); topical an-
esthetics and other non-nocuous routes
of analgesia and sedation; monitoring
for adverse outcomes; and the use of
discharge instructions that outline
the indications, dose, and duration of
analgesic to be used.246–248 Discharge
instruction also should include any
possible adverse effects of sedative/
analgesic medications used in the ED.
Adverse events that lead to respiratory
depression or other life-threatening
conditions should be fully reviewed
by a committee charged with under-
standing if systemic care issues or
provider-specific issues were root
causes of these outcomes.

Implementation
A systematic approach to pain man-
agement in the EMS requires an im-
plementation strategy, promoted and
advocated by leadership, that includes
the following: (1) a comprehensive
evaluation of current pain and distress
management practices; (2) an edu-
cational and credentialing program
regarding pain assessment and man-
agement techniques for all clinical
staff, preferably overseen by a hospital-
wide sedation committee248; (3) de-
velopment of protocols to allow the
universal and efficient application
of pain management strategies and
medications; and (4) a quality improve-
ment process to evaluate the ongoing
success of the program.11,13 EMS
agencies should establish policies and
protocols that make available perti-
nent provider education and ensure
quality improvement processes are in
place for pediatric pain management
protocols appropriate for their practice
setting.

CONCLUSIONS
Management of a child’s distress
during illness or after an injury is an
important yet complex aspect of emer-
gency medical care for children. Physi-
cians and prehospital EMS providers
should be aware of all the available
analgesic and sedative options. Ade-
quate pain assessment is essential for
pain relief and should begin on entry
into the EMS and continue through
discharge of the child from the ED.
Multiple modalities are now available
that allow pain and anxiety control
for all age groups. Future research
should concentrate on pharmacologic,
nonpharmacologic, and device-related
technology that can assist in reducing
the pain and distress associated with
medical procedures.

SUMMARY OF KEY POINTS
1. Training and education in pediatric
pain assessment and management
should be provided to all partici-
pants in the EMS for children;
EMS medical directors should for-
mally include pediatric pain manage-
ment measures within the protocols
provided to EMS providers.
2. Incorporation of child life specialists
and others trained in nonpharmaco-
logic stress reduction can alleviate
the anxiety and perceived pain re-
lated to pediatric procedures.
3. Family presence during painful
procedures can be a viable and
useful practice in the acute care
setting.
4. Pain assessment for children
should begin at admission to EMS,
including prehospital manage-
ment, and continue until discharge
from the ED. When discharged,
patients should receive detailed instructions
regarding analgesic administration.
5. Administration of analgesics and
anesthetics should be painless or
as pain free as possible.
6. Neonates and young infants should
receive adequate pain prophylaxis
for procedures and pain relief as
appropriate.
7. Administration of pain medication
has been demonstrated to pre-
serve the ability to assess patients
with abdominal pain and should
not be withheld.
8. Sedation or dissociative anesthe-
sia should be provided appropri-
ately for patients undergoing
painful or stressful procedures
in the ED.
9. Pain management and sedation, in-
cluding deep sedation and dissoci-
tive anesthesia, are fully within the
monitoring and management cap-
abilities of appropriately trained
emergency medicine and pediatric
emergency medicine physicians.
Each emergency department that
provides sedation and analgesia
to children should include sedation
competencies in recredentialing
procedures and develop protocols,
policies, and quality improvement
programs as part of the systematic
approach to pain management in
the EMS.

LEAD AUTHORS
Joel A. Fein, MD, MPH
William T. Zempsky, MD, MPH
Joseph P. Cravero, MD

COMMITTEE ON PEDIATRIC
EMERGENCY MEDICINE, 2011–2012
Kathy N. Shaw, MD, MSCE, Chairperson
Alice D. Ackerman, MD, MBA
Thomas H. Chun, MD, MPH
Gregory P. Conners, MD, MPH, MBA
Nanette C. Dudley, MD
Joel A. Fein, MD, MPH
Susan M. Fuchs, MD
Brian R. Moore, MD
Steven M. Selbst, MD
Joseph L. Wright, MD, MPH

FORMER COMMITTEE MEMBERS
Laura S. Fitzmaurice, MD
Karen S. Frush, MD
Patricia J. O’Malley
Loren G. Yamamoto, MD, MPH, MBA
REFERENCES

66. Fratianne RB, Premsner JD, Huston MJ, Super DM, Yowler CJ, Standley JM. The

101. Cook IF, Murtagh J. Needle length required for intramuscular vaccination of infants.
and toddlers. An ultrasonographic study.

Pediatrics. 1997;100(3):1:400–403

144. Barnhill BJ, Holbert MD, Jackson NM, Erickson RS. Using pressure to decrease the pain of intramuscular injections.

145. Chung JW, Ng WM, Wong TK. An experimental study on the use of manual pressure to reduce pain in intramuscular injections.

Pediatrics. 1998;101(2). Available at: www.pediatrics.org/cgi/content/full/101/2/167

148. Brisman M, Ljung BM, Otterborn I, Larsson LE, Andréasson SE. Methaemoglobin formation after the use of EMLA cream in term neonates.

149. Taddio A, Shah V, Katz J. Reduced infant response to a routine care procedure after sucrose analgesia.
Pediatrics. 2003;112(3). Available at: www.pediatrics.org/cgi/content/full/123/3/e425

Pediatrics. 2008;121(2). Available at: www.pediatrics.org/cgi/content/full/121/2/e227

151. Blass E, Fitzgerald E, Kehoe P. Interactions between sucrose, pain and isolation distress.
Pharmacol Biochem Behav. 1987;26(3):485–489

152. Barr RG, Young SN, Wright JH, et al. “Sucrose analgesia” and diptheria-tetanus-pertussis immunizations at 2 and 4 months.

Pediatrics. 2010;126(5):894–902

Arch Dis Child. 2010;95(6):406–413

160. Stevens B, Yamada J, Ohlsson A. Sucrose for analgesia in newborn infants undergoing painful procedures.
Cochrane Database Syst Rev. 2010;(1):CD001069

Worldviews Evid Based Nurs. 2010;7(3):158–164

162. Carabajal R, Chauvet X, Couderc S, Olivier-Martín M. Randomized trial of analgesic effects of sucrose, glucose, and pacifiers in term neonates.
BMJ. 1999;319(7222):1353–1357

Relief of Pain and Anxiety in Pediatric Patients in Emergency Medical Systems
Joel A. Fein, William T. Zempsky, Joseph P. Cravero and THE COMMITTEE ON PEDIATRIC EMERGENCY MEDICINE AND SECTION ON ANESTHESIOLOGY AND PAIN MEDICINE

Pediatrics 2012;130;e1391

DOI: 10.1542/peds.2012-2536 originally published online October 29, 2012;

Updated Information & Services

including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/130/5/e1391

References

This article cites 232 articles, 55 of which you can access for free at:
http://pediatrics.aappublications.org/content/130/5/e1391.full#ref-list-1

Subspecialty Collections

This article, along with others on similar topics, appears in the following collection(s):

Committee on Pediatric Emergency Medicine
http://classic.pediatrics.aappublications.org/cgi/collection/committee_on_pediatric_emergency_medicine

Section on Anesthesiology and Pain Medicine
http://classic.pediatrics.aappublications.org/cgi/collection/section_on_anesthesiology_and_pain_medicine

Emergency Medicine
http://classic.pediatrics.aappublications.org/cgi/collection/emergency_medicine_sub

Permissions & Licensing

Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
https://shop.aap.org/licensing-permissions/

Reprints

Information about ordering reprints can be found online:
http://classic.pediatrics.aappublications.org/content/reprints

Pediatrics is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since . Pediatrics is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2012 by the American Academy of Pediatrics. All rights reserved. Print ISSN: .
Relief of Pain and Anxiety in Pediatric Patients in Emergency Medical Systems
Joel A. Fein, William T. Zempsky, Joseph P. Cravero and THE COMMITTEE ON PEDIATRIC EMERGENCY MEDICINE AND SECTION ON ANESTHESIOLOGY AND PAIN MEDICINE
Pediatrics 2012;130;e1391
DOI: 10.1542/peds.2012-2536 originally published online October 29, 2012;

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/130/5/e1391