Prevalence and Correlates of Exergaming in Youth

WHAT’S KNOWN ON THIS SUBJECT: Exergaming offers a physical activity (PA) alternative for youth that may be attractive in our increasingly technophilic society. Exergaming increases PA and decreases sedentary time, but most exergame studies are clinically based and focus on measuring energy expenditure during exergaming.

WHAT THIS STUDY ADDS: One-quarter of adolescents exergamed at intensity levels that could help them achieve PA recommendations. Exergamers were more likely to be female, play nonactive video games, watch 2 hours of television per day, be stressed about weight, and be nonsmokers.

abstract

OBJECTIVES: Less than 15% of children and adolescents participate regularly in physical activity (PA) and, with ever-increasing obesity, strategies to improve PA levels in youth are urgently needed. Exergaming offers a PA alternative that may be especially attractive in our increasingly technophilic society. However, there are no observational studies of exergaming in population-based samples of adolescents. The purpose of this study was to investigate potential sociodemographic, lifestyle, psychosocial, weight-related, and mental health correlates of exergaming as well as describe the type, timing, and intensity of exergaming in a population-based sample of adolescents.

METHODS: Data on exergame use and potential sociodemographic, lifestyle, psychosocial, weight-related, and mental health correlates of exergaming were collected in mailed self-report questionnaires completed by 1241 grade 10 and 11 students from the Montreal area with a mean age of 16.8 years (SD = 0.05 years; 43% male) participating in the AdoQuest study. The independent correlates of exergaming were identified in multivariable logistic regression models.

RESULTS: Nearly one-quarter (24%) of participants reported exergaming. Exergamers played 2 days per week on average, for ~50 minutes each bout; 73% of exergamers played at a moderate or vigorous intensity. Exergamers were more likely than nonexergamers to be girls, to play nonactive video games, to watch ≥2 hours of television per day, to be stressed about weight, and to be nonsmokers.

CONCLUSIONS: Many adolescents exergame at intensity levels that could help them achieve current moderate-to-vigorous PA recommendations. Interventions that encourage exergaming may increase PA and decrease sedentary behavior in select youth subgroups, notably in girls. Pediatrics 2012;130:806–814

AUTHORS: Erin K. O’Loughlin, MA,a Erika N. Dugas, MSc,a Catherine M. Sabiston, PhD,b and Jennifer L. O’Loughlin, PhDac

acCentre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada; bFaculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; cDepartment of Social and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada; and dInstitut National de Santé Publique du Québec, Montreal, Quebec, Canada

KEY WORDS exergaming, youth, correlates, guidelines, physical activity, active video games, adolescents

ABBREVIATIONS MVPA—moderate-to-vigorous physical activity
PA—physical activity
SES—socioeconomic status

Ms E. O’Loughlin reviewed the literature, contributed to the design of the analysis and interpretation of the data, and wrote sections of the article; Dr Sabiston, Ms E. Dugas, and Dr J. O’Loughlin contributed to the design and interpretation of the analysis and wrote sections of the manuscript; and Dr J. O’Loughlin designed the study, obtained the funding, developed the survey instruments and supervised data collection. All authors reviewed the article critically and approved the final version.

www.pediatrics.org/cgi/doi/10.1542/peds.2012-0391
doi:10.1542/peds.2012-0391
Accepted for publication Jun 27, 2012
Address correspondence to Jennifer L. O’Loughlin, PhD, Department of Social and Preventive Medicine, University of Montreal, 3875 St Urbain (1st Floor), Montreal, Quebec H2W 1V1. E-mail: jennifer.oloughlin@umontreal.ca

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275). Copyright © 2012 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

FUNDING: Supported by the Canadian Cancer Society (grant 15689) and the Institut national de santé publique du Québec. Dr J. O’Loughlin holds a Canada Research Chair in the Early Determinants of Adult Chronic Disease.
Physical activity (PA) may be key to preventing, controlling, and reducing obesity, yet PA levels in children and adolescents have declined markedly in the past 2 decades and few youth meet current PA guidelines. Many PA interventions for youth do not have short- or long-term impact, and it is becoming critical to identify effective and sustainable strategies to increase PA in youth. Active video games offer a PA alternative that may be both popular and effective in our increasingly technophilic society.

Active video games are games in which individuals or groups of individuals interact in a physically active manner by using technology. There are 3 types of active video gaming: exergames, interactive fitness activities, and active learning games. Exergames include rhythmic dancing games, virtual bicycles, balance board simulators, and virtual sports simulators, all of which require a screen and console such as the Wii. Interactive fitness activities such as HOPSports are non-screen-based games but require technology, and players must be physically active to play the game. Finally, active learning games such as Footgaming are screen-based games with an academic focus that require PA. The current study focuses on exergames.

Exergaming capitalizes on the popularity of traditional video games, which are used by 83% of American youth. When exergaming, participants assume character roles, and their movements are tracked on-screen as they attempt to attain an objective. No specific skills or fitness levels are required to begin playing. Exergaming increase PA in general, as well as in specific populations such as visually impaired children. They are generally played at home but are also used in schools and community centers. Exergames can be played in a variety of settings including unsafe neighborhoods, they can increase opportunities for youth to engage in PA and decrease sedentary behavior.

Exergaming may have added value in youth compared with adults because young people are generally more physically active (ie, move more) while exergaming, and game exertion (effort) is not a deterrent to exergaming. Exergaming may be more enjoyable than sedentary video games and treadmill workouts, and they provide youth with opportunities to try a range of sports (eg, boxing, kung fu), which may in turn increase motivation to become involved in these activities at school or local sports centers.

The primary purpose of extant exergaming studies has been to describe energy expended during exergaming. Several studies also examine maintenance of exergaming over time, and at least 3 small and 1 large trial evaluate exergaming as a method to increase PA in youth. Two of the 3 small trials indicated modest improvements in PA, and the larger longer trial suggested that exergaming leads to small but statistically significant decreases in BMI as well as improvements in body composition in overweight children. Finally, the effect of exergaming on rehabilitation has been investigated in several studies.

Most research on exergaming to date has been conducted in clinical settings so that little is known about the type, duration, or intensity of exergaming in population-based samples of adolescents. In addition, it is not known if the sociodemographic, lifestyle, psychosocial, health, or weight-related characteristics of youth who exergame differ from those who do not. In this study, we describe exergame use in a large population-based sample of adolescents and identify the independent correlates of exergaming. Increased understanding of the characteristics of exergamers, as well as where exergames are played and which ones are most popular, may inform the development of interventions that improve PA participation in youth.

METHODS

Data were drawn from the AdoQuest study, a prospective cohort investigation of 1843 students aged 10 to 12 years at cohort inception, which was designed to investigate the natural course of the co-occurrence of health-compromising behaviors in children. The sample was drawn from a stratified random sample of schools selected from among all French-language schools with >90 grade 5 students in the greater Montreal area (Quebec, Canada). To ensure equal representation of participants within different socioeconomic status (SES) strata, all schools located in the target territory were stratified based on a continuous SES indicator, and 9 or 10 schools were randomly selected from within each of the upper, middle, and lower school SES tertile groupings. Study participants were recruited from all grade 5 classes in each of the 29 participating schools. All participants provided written assent, and their parents/guardians provided written informed consent. In addition, parents completed mailed self-report questionnaires in 2006–2007 and again in 2008–2009. The study received ethics approval from the Research Ethics Boards of the Faculty of Medicine of McGill University, the Conseil sur l’Ethique et la Recherche, Concordia University, and the Centre de Recherche du Centre Hospitalier de l’Université de Montréal.

This current cross-sectional analysis uses data collected in 2010–2011 when participants were aged 14 to 19 years and in grades 10 or 11. Data on sociodemographic characteristics, cigarette smoking, exergame use, PA,
depression, anxiety, stress, and substance use were collected in mailed self-report questionnaires completed by 1241 of the original 1843 participants (67%). In general, the questions used in the AdoQuest questionnaire were drawn from ongoing surveys and studies of youth including the Canadian Youth Smoking Survey51 and the Nicotine Dependence in Teens Study.52 The AdoQuest questionnaire was pretested for readability and comprehension by 15 persons including students in the same age range as AdoQuest participants and the AdoQuest investigators (which include a public health physician, PA experts, and a psychiatrist who works with youth).

Study Variables

We modeled the questions on exergaming type and perception of intensity and timing on the short self-administered usual week International Physical Activity Questionnaire, which is used in cross-national monitoring of PA in youth and adults. The questionnaire demonstrates reliability as well as validity against accelerometer data.53 Exergaming was measured by asking participants: “Do you play active video games (ex: Wii Fit, Dance Dance Revolution)?” (yes/no). Those who responded “yes” were asked (1) how many days a week they played active video games (participants responded 1–7 days); (2) how many minutes (on average) they played each time (open-ended); (3) the effort of play (light, moderate, vigorous as perceived by the participant); (4) location of play: “Do you play the following games at your house, your friend’s house, or at school? (Please check all that apply)”; and (5) which specific exergames they played.

Potential correlates of exergaming were selected based on known PA correlates in adolescence,54 as well as on the availability of data in AdoQuest. Socio-demographic variables investigated included age, gender, currently employed (yes/no), and Caucasian (yes/no). In addition, data on mother university-educated (yes/no) and annual household income (<30,000, 30,000–99,999, >100,000$ CAN) were drawn from the parent questionnaire.

Data on substance use included current cigarette smoking status and past 12-month binge drinking (at least 5 drinks on 1 occasion), marijuana use, and use of other illicit drugs (heroin, ecstasy, hallucinogens).55 Participants were coded yes or no for each substance if there was indication of any use in the past 12 months.

PA was measured in 4 indicators from the International Physical Activity Questionnaire, which demonstrates reliability and validity against accelerometer data.55 Vigorous PA was measured in 2 items: “During the last 7 days, on how many days did you do vigorous physical activities (heavy lifting, digging, aerobics, fast bicycling) for at least 10 minutes at a time?” and “On the days that you did vigorous physical activities, how many minutes did you usually do per day?” Moderate PA was measured by asking, “In the last 7 days, on how many days did you do moderate physical activities (carrying light loads, bicycling at a regular pace, doubles tennis) for at least 10 minutes? ” and “On the days that you did moderate physical activities, how many minutes did you usually do per day?” Minutes of moderate and vigorous PA were totaled to create a moderate-to-vigorous physical activity (MVPA) score. Participants were categorized as meeting MPVA guidelines (ie, adolescents should engage in MVPA for 420 minutes/week) if they reported at least 60 minutes of moderate or vigorous PA most days.56 Participants provided data on sedentary screen-time behavior including use of nonactive video games, watching television, and spending time on a computer. Each was coded as <2 or ≥2 hours per day based on recently established screen time guidelines.57

Data were collected on 3 weight-related indicators including BMI (computed by using self-reported height and weight). Participants were classified by using Centers for Disease Control and Prevention reference standards, which are gender- and age-specific, as normal weight (<85th percentile), overweight (≥85 to <95th percentile), or obese (≥95th percentile). Self-perceived weight status was categorized as either normal or overweight (if participants self-reported that they were “a bit heavy” or “much too heavy”). Finally, participants were categorized as trying to lose weight (yes/no).

Data on stress or worry about common problems in adolescence (yes/no) were collected with the question, “Did you ever in your life experience: (1) changes in your weight or your physical appearance that you did not like; (2) being cut from a sports team, club, or other organization; (3) suffer from a health problem (asthma, acne); and (4) problems being accepted by your peers?”

Depression symptoms were measured in the validated 6-item Kandel Depressive Scale,59,60 which assessed how often (never, rarely, sometimes, often, always) in the past 7 days participants (1) felt too tired to do things; (2) had trouble going to sleep or staying asleep; (3) felt unhappy, sad, or depressed; (4) felt hopeless about the future; (5) felt nervous or tense; and (6) worried too much about things. Responses were summed and then divided by the number of items responded to, to create a depression symptom score that ranged from 1 to 5 (mean [SD] = 2.22 [0.8]) with higher values indicating more frequent depression symptoms. If participants did
not answer ≥50% of the items, the code was set to missing.

Participants provided data on whether they had ever been diagnosed (yes/no) by a health professional with an anxiety disorder (phobia, obsessive-compulsive disorder, panic attacks, generalized anxiety disorder), eating disorder (anorexia, bulimia), or attention-deficit/hyperactivity disorder.

Data Analysis
The association between each potential correlate and exergaming (yes/no) was investigated in univariate logistic regression modeling. Variables associated with exergaming at P < .25 were included in a multivariable logistic regression model. All analyses were conducted by using SPSS software, version 16.0 (SPSS Inc, Chicago, IL).

RESULTS
Thirty-two of the 1241 participants who completed questionnaires in 2010–2011 were excluded due to missing data on exergaming, so that the final analytic sample was n = 1209. Compared with participants not retained for analysis (n = 634), significantly higher proportions of those retained (n = 1209) were female, had a university-educated mother, and had an annual household income >$100,000 (CAN) (Table 1). In addition they were younger on average.

The mean (SD) age of participants was 16.8 (0.5) years, 43% were boys, 92% were Caucasian, 76% were in grade 11, 47% were employed, and 27% had university-educated mothers. The mean (SD) BMI was 22.8 (3.9) in males, and 21.5 (3.5) in females. Fifty percent of participants’ parents reported an annual household income that ranged from $30,000 to 99,999, 7% reported an annual income of <$30,000, 24% reported an annual income of ≥$100,000 (Canadian dollars), and data were missing for 19% of participants.

TABLE 1 Comparison of Selected Sociodemographic Characteristics of Participants Retained and Not Retained for Analysis (AdoQuest 2005, 2010–2011)

<table>
<thead>
<tr>
<th></th>
<th>Retained (n = 1209)</th>
<th>Not Retained* (n = 634)</th>
<th>P Value for Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boys, %</td>
<td>45.1</td>
<td>55.2</td>
<td>.003</td>
</tr>
<tr>
<td>Age at baseline, mean (SD)</td>
<td>10.7 (0.5)</td>
<td>10.8 (0.5)</td>
<td><.000</td>
</tr>
<tr>
<td>Mother university-educated, %†</td>
<td>32.1</td>
<td>24.6</td>
<td>.010</td>
</tr>
<tr>
<td>Annual household income ($ CAN), %‡</td>
<td>8.6</td>
<td>13.8</td>
<td>.002</td>
</tr>
<tr>
<td>≤$30,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>$30,000–$99,999</td>
<td>61.9</td>
<td>65.2</td>
<td></td>
</tr>
<tr>
<td>≥$100,000</td>
<td>29.5</td>
<td>21.0</td>
<td></td>
</tr>
</tbody>
</table>

*a Includes 682 participants who did not complete a questionnaire in cycle 6, and 32 participants who completed survey cycle 6 but were missing data on exergaming.

*b Excludes 452 participants missing data on mother’s education.

‡ Excludes 588 participants missing data on annual household income.

TABLE 2 Exergames Played by Grade 10 and 11 Students in Montreal, Canada, According to Location Where Game Was Played (AdoQuest 2010–2011)

<table>
<thead>
<tr>
<th>Exergames Played</th>
<th>At Home, %</th>
<th>At Friend’s Home, %</th>
<th>At School, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wii Sports</td>
<td>68</td>
<td>26</td>
<td><1</td>
</tr>
<tr>
<td>Dance Dance Revolution</td>
<td>40</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>Wii Fit: Yoga</td>
<td>34</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Boxing (Punchout)</td>
<td>15</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Just Dance</td>
<td>6</td>
<td>3</td>
<td><1</td>
</tr>
<tr>
<td>Kinect (console)</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>EA Active</td>
<td>6</td>
<td>3</td>
<td><1</td>
</tr>
<tr>
<td>Eye Toy (Groove, Hero, Kinetic Combat, Play Sports)</td>
<td>4</td>
<td>4</td>
<td><1</td>
</tr>
<tr>
<td>Yourself Fitness!</td>
<td>4</td>
<td>3</td>
<td><1</td>
</tr>
<tr>
<td>Pump It Up</td>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Jenny McCarthy (In Shape)</td>
<td><1</td>
<td>2</td>
<td><1</td>
</tr>
<tr>
<td>Powergrid Fitness Kilowatt</td>
<td>1</td>
<td>2</td>
<td><1</td>
</tr>
<tr>
<td>Cyclescore</td>
<td><1</td>
<td>3</td>
<td><1</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

DISCUSSION
Almost one-quarter of participants in this population-based sample of adolescents exergamed. On average, they played 2 days per week for an average of 50 minutes per bout, and 73% played at moderate or vigorous intensity. Current PA guidelines for youth recommend 60 minutes of MVPA most days per week so 73% of exergamers were close to meeting MVPA guidelines at least 2 days per week. In contrast, Colley et al (2011) reported that 80% of boys and 67% of girls in this age group met MVPA guidelines only 1 day per week. In our
<table>
<thead>
<tr>
<th>Sociodemographic characteristics</th>
<th>Crude and Adjusted ORs for Potential Correlates of Exergaming Among Grade 10 and 11 Students in Montreal, Canada (AdoQuest 2010–2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Exergame, %</td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
</tr>
<tr>
<td>14–15</td>
<td>64</td>
</tr>
<tr>
<td>16–17</td>
<td>1119</td>
</tr>
<tr>
<td>18–20</td>
<td>16</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>685</td>
</tr>
<tr>
<td>Male</td>
<td>524</td>
</tr>
<tr>
<td>Caucasian</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>86</td>
</tr>
<tr>
<td>Yes</td>
<td>1109</td>
</tr>
<tr>
<td>Mother university-educated</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>646</td>
</tr>
<tr>
<td>Yes</td>
<td>232</td>
</tr>
<tr>
<td>Employed</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>641</td>
</tr>
<tr>
<td>Yes</td>
<td>568</td>
</tr>
<tr>
<td>Annual household income, $CAN</td>
<td></td>
</tr>
<tr>
<td><30 000</td>
<td>82</td>
</tr>
<tr>
<td>30 000–89 000</td>
<td>597</td>
</tr>
<tr>
<td>≥100 000</td>
<td>275</td>
</tr>
<tr>
<td>Lifestyle habits</td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1069</td>
</tr>
<tr>
<td>Yes</td>
<td>156</td>
</tr>
<tr>
<td>Binge drinking</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>554</td>
</tr>
<tr>
<td>Yes</td>
<td>644</td>
</tr>
<tr>
<td>Marijuana use</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>894</td>
</tr>
<tr>
<td>Yes</td>
<td>305</td>
</tr>
<tr>
<td>Used other illicit drugs</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1089</td>
</tr>
<tr>
<td>Yes</td>
<td>105</td>
</tr>
<tr>
<td>Nonactive videogames, h/d</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>727</td>
</tr>
<tr>
<td><2</td>
<td>359</td>
</tr>
<tr>
<td>≥2</td>
<td>105</td>
</tr>
<tr>
<td>Television, h/d</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>54</td>
</tr>
<tr>
<td><2</td>
<td>776</td>
</tr>
<tr>
<td>≥2</td>
<td>370</td>
</tr>
<tr>
<td>Computer, h/d</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>61</td>
</tr>
<tr>
<td><2</td>
<td>688</td>
</tr>
<tr>
<td>≥2</td>
<td>472</td>
</tr>
<tr>
<td>Meets PA guidelines</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>927</td>
</tr>
<tr>
<td>Yes</td>
<td>246</td>
</tr>
<tr>
<td>Weight-related characteristics</td>
<td></td>
</tr>
<tr>
<td>BMI percentile</td>
<td></td>
</tr>
<tr>
<td><85</td>
<td>923</td>
</tr>
<tr>
<td>85–94</td>
<td>111</td>
</tr>
<tr>
<td>≥95</td>
<td>65</td>
</tr>
<tr>
<td>Missing</td>
<td>110</td>
</tr>
<tr>
<td>Perceived overweight</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>952</td>
</tr>
<tr>
<td>Yes</td>
<td>244</td>
</tr>
</tbody>
</table>

810 O’LOUGHLIN et al

Downloaded from by guest on May 1, 2017
sample, an additional 27% of exergamers (6% of all participants) played at a light intensity, which may also produce health benefits by increasing sedentary time. 21,22 Currently youth spend 62% of their waking hours in sedentary activities. 4 Exergames such as Wii Fit and Dance Dance Revolution in which high amounts of energy are expended16,32,37,63,64 and which may also contribute to meeting muscle conditioning guidelines,56 were the most popular exergames. Most exergamers played at home, although many also played at friends’ homes. Although exergaming at school is associated with improvements in academic behavior and achievement,65–67 AdoQuest participants rarely exergamed at school.

Overall these data suggest that exergaming is a popular activity that provides opportunities for adolescents to engage in healthy levels of PA as well as reduce sedentary time. Its popularity may relate to its reliance on technology, easy access at home “on demand,” the social interaction integral to many games, the constant feedback on progress toward a goal, being able to try something new, and because, for many people, exergaming is fun.7,8 Lack of school-based exergaming may represent a “missed opportunity” to introduce young people to another form of PA, as well as to increase the number of opportunities for young people to be physically active.7

Although boys are more likely to play nonactive video games,68 girls were more likely to exergame in this analysis. It is possible that some girls may be uncomfortable exercising at school or in community settings because they feel scrutinized or judged and therefore prefer exercising at home alone or with friends.69,70 Alternatively, girls may particularly enjoy the social interaction that exergaming provides, which may increase motivation to play.71 Exergames allow users to create virtual characters to represent themselves on screen, which may also appeal to girls. Finally consoles keep track of progress and provide constant feedback,7 which may provide a form of motivation that is particularly appealing to girls.

Exergamers were more likely to be stressed about their weight. Adolescents who perceive their weight negatively may enjoy exergaming because it can be done at home with less scrutiny.29 Alternatively, their parents may encourage them to exergame to lose or manage weight.72 It is also possible that young people who are stressed about their weight find exergaming a relief from stress and in addition recognize the possible weight loss benefits of exergaming.44

Because exergaming is in essence a video game, it is not surprising that

<table>
<thead>
<tr>
<th>TABLE 3 Continued</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

Psychosocial characteristics

Stress about weight/physical dissatisfaction

	n	Exergame, %	ORcrude (95% CI)	P Value	ORadjb (95% CI)	P Value
No	809	19.8	Ref	Ref		
Yes	310	34.2	2.1 (1.6–2.8)	.088	1.5 (1.0–2.7)	.147

Stress about being cut from sports team/organization

	n	Exergame, %	ORcrude (95% CI)	P Value	ORadjb (95% CI)	P Value
No	1088	22.8	Ref	Ref		
Yes	121	29.8	1.4 (1.0–2.2)	.001	1.4 (0.9–2.2)	.148

Stress about health

	n	Exergame, %	ORcrude (95% CI)	P Value	ORadjb (95% CI)	P Value
No	851	20.8	Ref	Ref		
Yes	358	29.9	1.6 (1.2–2.2)	.157	1.3 (1.0–1.8)	.117

Stress about being accepted by peers

	n	Exergame, %	ORcrude (95% CI)	P Value	ORadjb (95% CI)	P Value
No	1110	23.0	Ref	Ref		
Yes	99	29.3	0.7 (0.5–1.1)	.001	0.7 (0.4–1.1)	.273

Depression symptoms

| | n | Exergame, % | ORcrude (95% CI) | P Value | ORadjb (95% CI) | P Value |
| No | 2.2 (0.82) | 2.4 (0.8) | 1.4 (1.2–1.6) | .131 | 1.1 (0.9–1.4) | .355 |

Diagnosed mental health disorders

	n	Exergame, %	ORcrude (95% CI)	P Value	ORadjb (95% CI)	P Value
Anxiety disorder						
No	1174	23.2	Ref	Ref		
Yes	35	34.3	1.7 (0.9–3.5)	.319	0.7 (0.3–1.5)	

Eating disorder

	n	Exergame, %	ORcrude (95% CI)	P Value	ORadjb (95% CI)	P Value
No	1198	23.4	Ref	Ref		
Yes	11	36.4	1.9 (0.5–6.5)	.359	—	

ADHD

	n	Exergame, %	ORcrude (95% CI)	P Value	ORadjb (95% CI)	P Value
No	1164	23.7	Ref	Ref		
Yes	45	17.8	0.7 (0.3–1.5)	—	—	

ADHD, attention-deficit/hyperactivity disorder; CI, confidence interval; OR, odds ratio; REF, reference category.

a n = 1209, totals differ across variables due to missing data.
b n = 1133, ORs were adjusted for all other variables in the model (ie, those that met the criterion P < .25 in univariate analysis).
c Age and depression symptoms were tested as continuous variables. — signifies variable was not in final multivariate analysis (ie. did not meet the criterion P < .25 in univariate analysis)
exergamers were more likely than non-
exergamers to engage in nonactive video
games and TV viewing. Exergaming
may be particularly appealing to youth
who are already heavily engaged in
screen activities. However, unlike non-
active video games and television,
exergaming reduces sedentary screen
time, which is negatively associated
with obesity.73–75

Our results concur with a recent report
that youth who play traditional video
games are less likely to smoke.66 It is
possible that exergamers spend more
time in front of screens and therefore
have less time to spend socializing with
peers who smoke. Peer smoking is a
strong determinant of smoking in
youth,52 and some reports suggest that
PA contributes to successful cessation
and reductions of nicotine withdrawal
symptoms.76,77 Exergaming may be a
useful component of cessation programs
targeting young smokers. Limits of this analysis include use
of self-report data, which may over-
estimate the prevalence, duration, and
intensity of exergaming. The cross-
sectional design limits causal infer-
ence. Finally, the sample was one of
convenience and limited to the Montreal
area. This, in addition to loss to follow-up
since cohort inception, may limit the
external generalizability of the results.

CONCLUSIONS

Many adolescents exergame weekly at
intensity levels that may help them
achieve current PA recommendations.
Although it is well established that boys
are more active than girls,4 girls were
more likely to exergame than boys.
Exergaming may help increase PA par-
ticipation and decrease sedentary time
in youth and especially in girls.
To maximize the potential of exergaming,
interventions should evaluate participant
preferences for specific exergames. Al-
though some individuals may not enjoy
exergaming at MVPA levels, they may still
benefit from exergaming at lighter levels
by reducing sedentary behavior.19,22–25
The feasibility of exergaming in com-
community centers or at school needs to be
tested, and research on the sustain-
ability of exergaming is warranted.19,28.
40 Reported barriers to exergaming (ie,
boredom, decreases in use over time,
technical problems, cost) need to be
addressed.18 Facilitators of exergames
(ie, social support, competition, music,
experience, new consoles, multiple player
modes, contact with players in separate
rooms, contact via Internet) hold promise
in sustaining exergaming.34,38,39,42 Rep-
lication of these results is warranted to
determine if exergaming is a promising
PA alternative for girls, as well as to
investigate other potential correlates of
exergaming.

REFERENCES

1. Katzmarzyk PT, Craig CL, Bouchard C.
Original article underweight, overweight
and obesity: relationships with mortality in
the 13-year follow-up of the Canada Fitness
920
2. McIver KL, Brown WH, Pfeiffer KA, Dowda M,
Pate RR. Assessing children’s physical ac-
tivity in their homes: the observational
system for recording physical activity in
(1):1–16
3. Ogden CL, Carroll MD, Curtin LR, Lamb
MM, Flegal KM. Prevalence of high body
mass index in US children and adoles-
249
4. Colley RC, Garriguet D, Janssen I, Craig CL,
Clarke J, Tremblay MS. Physical activity of
Canadian children and youth: accelerome-
ter results from the 2007 to 2009 Canadian
22(1):15–23
5. Spinks AB, Macpherson AK, Bain C, McClure
RJ. Compliance with the Australian national
physical activity guidelines for children:
relationship to overweight status. J Sci
6. Waters E, de Silva-Sanigorski A, Hall BJ,
et al. Interventions for preventing obesity in
2011;(12):CD001871
7. Sheehan D, Katz L. The practical and theore-
tical implications of flow theory and intrinsic
motivation in designing and implementing
exergaming in the school environment. J
Can Game Stud Assoc. 2012;6(9):53–68
8. Hansen L, Sanders S. Exergaming: Com-
bing Video Games, Physical Activity, and
Fun. Fort Worth, TX: American Association
of Health Physical Education Recreation
and Dance; 2008
9. Witherspoon Hansen L, Sanders SW. Ac-
tive gaming: a new paradigm in childhood
physical activity. Digital Culture Educ. 2011;
December 11. Available at: www.digital
cultureandeducation.com/uncategorized/
dce_1040_hansen_html/ Accessed August
24, 2012
10. Roberts D, Foehr U, Rideout V. Generation
M: media in the lives of 8–18 year olds. A
Available at: www.kff.org/entmedia/upload/
Executive-Summary-Generation-M-Media-
February 7, 2012
Directions for Fitness Education in Physical
Education [Anchin Center Policy Brief].
Tampa, FL: Florida University of South;
2008
12. O’Leary KC, Pontifex MB, Scudder MR,
Brown ML, Hillman CH. The effects of sin-
gle bouts of aerobic exercise, exergaming,
and videogame play on cognitive con-
1525
13. White K, Kilding AE, Schofield G. Energy Ex-
penditure and Enjoyment During Nintendo
Wii Active Video Games: How Do They
Compare to Other Sedentary and Physi-
cal Activities? Centre for Physical Activity
and Nutrition, Auckland City, New Zealand;
2009
The health benefits of interactive video
game exercise. Appl Physiol Nutr Metab.
2007;32(4):655–663
15. Morelli T, Foley J, Lieberman L, Folmer E.
Pet-N-Punch: upper body tactile/audio
exergame to engage children with visual
impairments into physical activity. In:
Brooks S, Irani P, eds. Proceedings of
Graphics Interface 2011. Waterloo, Canada:
Canadian Human-Computer Communications Society School of Computer Science, University of Waterloo; 2011:223–230

16. Bailey BW, McNinis K. Energy cost of exer-

20. Baranowski T, Buday R, Thompson DL, Baranowski J. Playing for real: video games and stories for health-related be-

22. Healy GN, Dunstan DW, Salmon J, et al. Breaks in sedentary time: beneficial asso-

23. Mellecker RR, McManus AM. Energy ex-

25. DeMattia L, Lemont L, Meurer L. Do inter-

27. Sit CH, Lam JW, McKenzie TL. Direct obser-
vation of children’s preferences and activity levels during interactive and online elec-

30. Graf DL, Pratt LV, Hester CN, Short KR. Playing active video games increases en-

31. Graves LE, Ridgers ND, Stratton G. The contribution of upper limb and total body movement to adolescents’ energy expendi-

37. Siegel SR, L Haddock B, Dubois AM, Wilkin LD. Active video/game arcades (exergam-

cessed August 24, 2012

42. Craig CL, Marshall AL, Sjöström M, et al. International physical activity question-

Prevalence and Correlates of Exergaming in Youth
Erin K. O’Loughlin, Erika N. Dugas, Catherine M. Sabiston and Jennifer L. O’Loughlin

Pediatrics 2012;130:806; originally published online October 1, 2012;
DOI: 10.1542/peds.2012-0391

Updated Information & Services including high resolution figures, can be found at:
/content/130/5/806.full.html

References This article cites 60 articles, 9 of which can be accessed free at:
/content/130/5/806.full.html#ref-list-1

Citations This article has been cited by 3 HighWire-hosted articles:
/content/130/5/806.full.html#related-urls

Subspecialty Collections This article, along with others on similar topics, appears in the following collection(s):
Adolescent Health/Medicine
/cgi/collection/adolescent_health:medicine_sub

Permissions & Licensing Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints Information about ordering reprints can be found online:
/site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2012 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.
Prevalence and Correlates of Exergaming in Youth
Erin K. O'Loughlin, Erika N. Dugas, Catherine M. Sabiston and Jennifer L. O'Loughlin

Pediatrics 2012;130:806; originally published online October 1, 2012; DOI: 10.1542/peds.2012-0391

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/130/5/806.full.html