Maternal Multiple Micronutrient Supplements and Child Cognition: A Randomized Trial in Indonesia

WHAT’S KNOWN ON THIS SUBJECT: Micronutrients are essential for brain development during gestation and infancy. Few randomized trials of maternal multiple micronutrient supplementation during pregnancy and postpartum have examined child outcomes beyond the neonatal period or tested which cognitive domains show long-term effects.

WHAT THIS STUDY Adds: Children of undernourished mothers given multiple micronutrients performed as well as children of well-nourished mothers in motor and visual attention/spatial ability at age 42 months; children of undernourished mothers given iron/folic acid showed 4- to 5-month delays in these abilities.

abstract

OBJECTIVES: We investigated the relative benefit of maternal multiple micronutrient (MMN) supplementation during pregnancy and until 3 months postpartum compared with iron/folic acid supplementation on child development at preschool age (42 months).

METHODS: We assessed 487 children of mothers who participated in the Supplementation with Multiple Micronutrients Intervention Trial, a cluster-randomized trial in Indonesia, on tests adapted and validated in the local context measuring motor, language, visual attention/spatial, executive, and socioemotional abilities. Analysis was according to intention to treat.

RESULTS: In children of undernourished mothers (mid-upper arm circumference <23.5 cm), a significant benefit of MMNs was observed on motor ability ($B = 0.39$ [95% confidence interval (CI): 0.08–0.70]; $P = .015$) and visual attention/spatial ability ($B = 0.37$ [95% CI: 0.11–0.62]; $P = .004$). In children of anemic mothers (hemoglobin concentration <110 g/L), a significant benefit of MMNs on visual attention/spatial ability ($B = 0.24$ [95% CI: 0.02–0.46]; $P = .030$) was also observed. No robust effects of maternal MMN supplementation were found in any developmental domain over all children.

CONCLUSIONS: When pregnant women are undernourished or anemic, provision of MMN supplements can improve the motor and cognitive abilities of their children up to 3.5 years later, particularly for both motor function and visual attention/spatial ability. Maternal MMN but not iron/folic acid supplementation protected children from the detrimental effects of maternal undernutrition on child motor and cognitive development. *Pediatrics* 2012;130:e536–e546

AUTHORS: Elizabeth L. Prado, PhD,a,b,c Katherine J. Alcock, DPhil,a, Anuraj H. Shankar, DSc,a for the SUMMIT Study Group

ABBREVIATIONS

Hb—hemoglobin

IFA—iron/folic acid

MMN—multiple micronutrient

MUAC—mid-upper arm circumference

SUMMIT—Supplementation with Multiple Micronutrients Intervention Trial

Dr Prado designed and supervised the developmental assessment, cleaned and analyzed the developmental data, and produced the first draft of the paper, as well as subsequent drafts and additional analyses. Dr Prado and Dr Alcock were joint principal investigators of the preschool child development follow-up study. Dr Alcock designed the developmental assessment battery with Dr Prado and advised on the training of the assessors. These data formed part of Dr Prado’s doctoral thesis at Lancaster University. Dr Alcock supervised Dr Prado’s doctoral studies, advised on analysis and interpretation of the data, and contributed to the manuscript. Dr Shankar was the principal investigator of the Supplementation with Multiple Micronutrients Intervention Trial (SUMMIT) study. He designed the protocols and directed and coordinated execution of the study. Dr Shankar helped with field and data management of the preschool developmental assessment and contributed to analysis and interpretation of the data and preparation of the manuscript. Dr Muadz contributed to the design and adaptation of the developmental assessment to the local context and helped with the field logistics and data management of the developmental assessment. Dr Ullman advised on the design of the developmental assessment, contributed to analysis and interpretation of the data, and co-wrote sections of the paper with Dr Prado. All individual authors critiqued the manuscript and approved the final report. The SUMMIT Study Group designed and executed the SUMMIT study.

This trial has been registered with the ISRCTN Register (http://isrctn.org) (identifier ISRCTN51451616).

www.pediatrics.org/cgi/doi/10.1542/peds.2012-0412
doi:10.1542/peds.2012-0412
Accepted for publication May 14, 2012

(Continued on last page)
Micronutrients are necessary for brain development during gestation and infancy. These are important periods for the formation of the brain, laying the foundation for the development of cognitive, motor, and socioemotional skills throughout childhood and adulthood. Children with restricted development of these skills during early life are at risk for later neuropsychological problems, poor school achievement, low-skilled employment, and poor care of their own children, thus contributing to the intergenerational transmission of poverty. More than 200 million children aged <5 years in low- and middle-income countries, at a conservative estimate, are not reaching their developmental potential in these areas.

Sufficient micronutrient intake is especially important when mothers are pregnant and breastfeeding, which are periods of increased micronutrient needs and crucial periods for the brain development of the infant. The neural tube begins to form 16 days after conception and within 7 months takes on a form that resembles the adult brain. Micronutrients are necessary for many of the biological processes that drive this transformation, including neuron proliferation, axon and dendrite growth, synaptogenesis, and myelination. For example, in animal models, maternal vitamin B6 deficiency results in decreased synaptic density in the neocortex, whereas maternal deficiency in either vitamin B6 or zinc leads to reduced dendritic branching. Maternal deficiency in iron and vitamin B6, as well as gestational hypothyroidism, which can be caused by deficiencies in iodine and selenium, result in reduced myelination in the offspring. Few studies have examined the effects of maternal micronutrient deficiencies on brain development in humans.

Although the World Health Organization recommends distribution of iron/folic acid (IFA) supplements to pregnant women, provision of multiple micronutrients (MMNs), including those important for brain development such as vitamin B6, zinc, and iodine, may be more beneficial for mothers and their children. Three randomized trials have examined the effect of maternal MMN supplementation on motor and cognitive development in infancy. Two of these have reported benefits on Bayley Scales of Infant Development motor scores in children (age 7 months) of undernourished mothers in Bangladesh and children (age 6–18 months) of HIV-1-infected mothers in Tanzania. A third trial in China found a benefit of maternal MMN supplementation compared with IFA on Bayley Scales of Infant Development mental but not motor scores at 12 months of age. These somewhat mixed results suggest that maternal MMN supplementation may improve motor development, although perhaps only in children of mothers who are at particular risk (ie, with HIV-1 infection or low BMI), and may also benefit other cognitive abilities.

Only 1 study has examined the effect of maternal MMN supplementation in older children: a randomized trial in Nepal, which assessed a cohort of 7- to 9-year-old children. Children whose mothers had received 15 micronutrients during pregnancy scored higher on a test of executive function than those whose mothers had received vitamin A alone. However, this benefit was found for only 1 of 6 tests of motor and cognitive function. Children of mothers in this same study who received iron, folic acid, and vitamin A scored higher on 5 of 6 cognitive and motor tests than those whose mothers received vitamin A alone. However, this benefit was found for only 1 of 6 tests of motor and cognitive function. Children of mothers in this same study who received iron, folic acid, and vitamin A scored higher on 5 of 6 cognitive and motor tests than those whose mothers received vitamin A alone. However, this benefit was found for only 1 of 6 tests of motor and cognitive function.

METHODS

This study was conducted as part of the Supplementation with Multiple Micronutrients intervention Trial (SUMMIT). A detailed description of the design and procedures of SUMMIT has been published previously. SUMMIT was a double-blind, cluster-randomized trial conducted on the Indonesian island of Lombok from 2001 through 2004. Pregnant women throughout Lombok were enrolled in SUMMIT at prenatal care clinics held...
by local midwives. Written informed consent was obtained from all participants. Consenting women received a daily supplement throughout the duration of pregnancy and until 3 months postpartum. Midwives were randomly assigned to distribute either IFA or MMNs. The contents of the 2 supplements are presented in Table 1. All women who received prenatal care from the same midwife received the same supplement. All SUMMIT scientists and personnel, government staff, and participants were unaware of the allocation of MMNs and IFA. The study protocol was approved by the National Institutes of Health Research and Development of the Ministry of Health of Indonesia, the Provincial Planning Department of Nusa Tenggara Barat Province, and the Johns Hopkins Joint Committee on Clinical Investigation (Baltimore, Maryland). Analysis was according to intention to treat.

SUMMIT staff visited participants within 72 hours of enrollment to record baseline information, including MUAC and Hb concentration, which were used to classify mothers as undernourished or anemic, respectively, in stratified analyses. Because midwives had been previously randomized to distribute IFA or MMNs, this classification was independent of randomization. Additional data were also collected (see Supplemental Information). The follow-up sample was drawn from a random sample of 2389 women who provided blood samples both before and after supplementation.

Follow-up Sample

Figure 1 shows the trial profile. A total of 28,426 children were born live, with 26,228 being alive at 12 weeks postpartum after mortality and loss to follow-up. To power the study to detect a difference of 0.3 SD and adding 15% for potential attrition, we targeted 549 mothers, comprising all mothers who gave birth between September 24, 2003, and March 31, 2004, and who had their blood drawn both before and after supplementation. We were able to test children of 484 of these mothers, including 3 sets of twins, for a total of 487 children. Of the targeted participants, the proportion who were not tested did not differ between IFA (32 of 272) and MMN (33 of 277) (P = .957). Fourteen motor scores (5 IFA, 9 MMN), 8 visual attention/spatial scores (2 IFA, 6 MMN), and 11 executive function scores (4 IFA, 7 MMN) were missing because the child refused to attempt the tests.

All testing was conducted from April to September 2007 at the homes of the participants within 3 weeks of the day the child turned 42 months. Written informed consent was obtained from a parent. Ethical approval for the informed consent and research procedures for the follow-up study was obtained from the Lancaster University Ethics Committee and the Mataram University Ethical Research Committee.

Developmental Tests

Developmental tests were selected that assess specific abilities which develop during early childhood and are likely to be sensitive to nutritional influences. Research in maternal and child undernutrition in humans and animals suggests possible effects on motor development, language development, and nonverbal cognitive development, including visual attention, visuospatial ability, and executive function, as well as socioemotional development. Tests that assess each of these domains were adapted to the local language, culture, and setting in Lombok, and were evaluated for reliability and validity. A full description of the test selection criteria, adaptations, and the reliability and validity results is reported in Prado et al. The tests are described in Table 2.

Additional Measures

The following data were also collected at the time of child testing: an adapted version of the Home Observation for the Measurement of the Environment inventory, the child’s Hb concentration, and maternal depression. For details, see Supplemental Information.

Statistical Analyses

Group Characteristic Comparisons

First, we examined whether children whose mothers received MMNs and IFA were matched on the characteristics listed in Table 3. For the continuous variables, the difference was estimated in mixed effects models. A random effect of midwife code on intercept was included in all analyses because the randomization was allocated by midwife rather than by individual participant;
specification of this random effect accounts for variation between midwife clusters. For the categorical variables, the difference between groups was estimated by using generalized linear models, with midwife code as a repeated measure. For details, see Supplemental Information.

Calculation of Test Scores
For each test score (described in Table 1), z scores were computed on the basis of the distribution of our sample. The computation of z scores harmonized every test score to the same scale. This allowed us to compute composite domain scores as the average of each child’s test z scores from that domain, in the following domains: language development, Picture Vocabulary and Sentence Complexity z scores; socio-emotional development, socioemotional competence and problem z scores; executive function, Snack Delay and Windows z scores; and visual attention/spatial ability, Visual Search and Block Design z scores. For details, see Supplemental Information. For the motor scale, 9.4% of item scores were missing. These missing items were imputed by using the sequential regression imputation method described in Raghunathan et al. For details, see Supplemental Information. We additionally performed the analyses on motor scores by counting refused (missing) items as a failure, rather than using imputation, and found a similar pattern of results.

RESULTS
The effect of MMNs on each domain score was estimated in mixed effects models with a fixed effect of supplement type and a random effect of midwife code. This model was estimated first with a fixed effect of supplement type as the only independent variable, and second, with fixed effects of supplement type and any variables from Table 3 that independently predicted each domain score. For a detailed description of covariate selection, see Supplemental Information. Because gestational age at birth (pre-term, full-term, or post-term) did not significantly predict any domain score, this variable was not included as a covariate.

To examine the effect on each domain score in children of mothers who were undernourished (MUAC <23.5 cm) at enrollment and mothers who were anemic (Hb <110 g/L) at enrollment, the interaction between each of these 2 variables and supplement type was (separately) added to the model. If this interaction was significant at the P < .1 level, the effect of MMNs was estimated for each subgroup.

FIGURE 1
Trial profile.

Effect of Maternal MMN Versus IFA
The effect of MMN versus IFA supplementation on each domain score was estimated in mixed effects models with a fixed effect of supplement type and a random effect of midwife code. This model was estimated first with a fixed effect of supplement type as the only independent variable, and second, with fixed effects of supplement type and any variables from Table 3 that independently predicted each domain score. For a detailed description of covariate selection, see Supplemental Information. Because gestational age at birth (pre-term, full-term, or post-term) did not significantly predict any domain score, this variable was not included as a covariate.

To examine the effect on each domain score in children of mothers who were undernourished (MUAC <23.5 cm) at enrollment and mothers who were anemic (Hb <110 g/L) at enrollment, the interaction between each of these 2 variables and supplement type was (separately) added to the model. If this interaction was significant at the P < .1 level, the effect of MMNs was estimated for each subgroup.
The interaction between maternal supplementation type and maternal undernutrition (MUAC <23.5 cm) was significant for motor development (B = 0.412; SE = 0.199; t(399) = 2.07; P = .039) and visual attention/spatial ability (B = 0.454, SE = 0.168, t(420) = 2.71, P = .007) but not for language, executive function, or socioemotional development.

In motor development, children of undernourished mothers who received MMNs scored 0.35 SD higher than those who received IFA (P = .044) (Table 5). In a group of children aged 30 to 55 months in Lombok tested to establish the developmental sensitivity of the tests,19 the estimate of the effect of age (in months) on the motor development z score was 0.08, indicating that motor development increased ∼0.08 SD with each additional month of age. Thus, this effect of maternal MMN supplementation on motor development (0.35 SD) represents an advantage equivalent to
∼4.5 months of age. No difference in motor scores was found in children of mothers who were not undernourished during pregnancy. This finding suggests that the effect of MMNs on motor development observed over all children in the adjusted analysis (Table 4) was due to this effect in children of undernourished, rather than well-nourished, mothers.

In visual attention/spatial ability, children of undernourished mothers who received MMNs scored 0.35 SD higher than those who received IFA (*P* = .011) (Table 5). Children of mothers who were not undernourished during pregnancy did not show this advantage. The effect of age in months on this score, in

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>IFA</th>
<th>MMN</th>
<th>IFA Versus MMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Mean ± SD or %</td>
<td>n</td>
<td>Mean ± SD or %</td>
</tr>
<tr>
<td>Baseline maternal age, y</td>
<td>234</td>
<td>25.7 ± 6.0</td>
<td>241</td>
</tr>
<tr>
<td>Baseline maternal height, cm</td>
<td>216</td>
<td>149.6 ± 4.9</td>
<td>217</td>
</tr>
<tr>
<td>Mean compliance (percentage of supplements consumed)</td>
<td>209</td>
<td>79.6 ± 21.3</td>
<td>201</td>
</tr>
<tr>
<td>Maternal cognitive z score</td>
<td>82</td>
<td>−0.04 ± 0.56</td>
<td>83</td>
</tr>
<tr>
<td>Maternal mood score at cognitive testing</td>
<td>41</td>
<td>41.4 ± 7.7</td>
<td>40</td>
</tr>
<tr>
<td>Maternal mood score at child testing</td>
<td>160</td>
<td>42.0 ± 5.5</td>
<td>160</td>
</tr>
<tr>
<td>Child’s birth weight, g</td>
<td>197</td>
<td>3199.5 ± 519.2</td>
<td>195</td>
</tr>
<tr>
<td>Child’s Hb concentration, g/L</td>
<td>198</td>
<td>10.9 ± 1.3</td>
<td>195</td>
</tr>
<tr>
<td>HOME inventory score</td>
<td>241</td>
<td>39.3 ± 5.3</td>
<td>246</td>
</tr>
<tr>
<td>Child’s hours of sleep in the 24 hours before testing</td>
<td>241</td>
<td>11.3 ± 1.3</td>
<td>246</td>
</tr>
<tr>
<td>Baseline maternal Hb concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><110 g/L</td>
<td>109/240</td>
<td>45</td>
<td>117/243</td>
</tr>
<tr>
<td>≥110 g/L</td>
<td>131/240</td>
<td>55</td>
<td>126/243</td>
</tr>
<tr>
<td>Baseline maternal MUAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><23.5 cm</td>
<td>68/212</td>
<td>32</td>
<td>75/220</td>
</tr>
<tr>
<td>≥23.5 cm</td>
<td>144/212</td>
<td>68</td>
<td>145/220</td>
</tr>
<tr>
<td>Baseline maternal education (completed years of formal education)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>18/236</td>
<td>8</td>
<td>22/243</td>
</tr>
<tr>
<td>1–6</td>
<td>121/236</td>
<td>51</td>
<td>121/243</td>
</tr>
<tr>
<td>7–9</td>
<td>66/236</td>
<td>28</td>
<td>59/243</td>
</tr>
<tr>
<td>>9</td>
<td>31/236</td>
<td>13</td>
<td>41/243</td>
</tr>
<tr>
<td>Baseline paternal education (completed years of formal education)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>18/225</td>
<td>7</td>
<td>21/231</td>
</tr>
<tr>
<td>1–6</td>
<td>94/225</td>
<td>42</td>
<td>96/231</td>
</tr>
<tr>
<td>7–9</td>
<td>47/225</td>
<td>21</td>
<td>50/231</td>
</tr>
<tr>
<td>>9</td>
<td>68/225</td>
<td>30</td>
<td>64/231</td>
</tr>
<tr>
<td>Baseline socioeconomic indexb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>85/237</td>
<td>36</td>
<td>98/243</td>
</tr>
<tr>
<td>1</td>
<td>69/237</td>
<td>29</td>
<td>66/243</td>
</tr>
<tr>
<td>2</td>
<td>48/237</td>
<td>20</td>
<td>43/243</td>
</tr>
<tr>
<td>>2</td>
<td>35/237</td>
<td>15</td>
<td>36/243</td>
</tr>
<tr>
<td>Gestational age at enrollment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First trimester</td>
<td>93/241</td>
<td>39</td>
<td>96/246</td>
</tr>
<tr>
<td>Second trimester</td>
<td>112/241</td>
<td>47</td>
<td>105/246</td>
</tr>
<tr>
<td>Third trimester</td>
<td>36/241</td>
<td>15</td>
<td>45/246</td>
</tr>
<tr>
<td>Parity (birth order of the tested child)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>81/237</td>
<td>34</td>
<td>78/243</td>
</tr>
<tr>
<td>2–3</td>
<td>109/237</td>
<td>46</td>
<td>123/243</td>
</tr>
<tr>
<td>4–5</td>
<td>40/237</td>
<td>17</td>
<td>32/243</td>
</tr>
<tr>
<td>≥6</td>
<td>7/237</td>
<td>3</td>
<td>10/243</td>
</tr>
<tr>
<td>Gestational age at birth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preterm (28–35 wk)</td>
<td>49/241</td>
<td>20</td>
<td>59/246</td>
</tr>
<tr>
<td>Full-term (37–42 wk)</td>
<td>157/241</td>
<td>65</td>
<td>157/246</td>
</tr>
<tr>
<td>Post-term (>42 wk)</td>
<td>35/241</td>
<td>14</td>
<td>30/246</td>
</tr>
<tr>
<td>Child’s gender (number of girls)</td>
<td>108/241</td>
<td>45</td>
<td>123/246</td>
</tr>
</tbody>
</table>

All baseline measures were taken within 72 hours of enrollment. Maternal cognitive and mood scores were taken from Prado et al.39

* Comparisons using mixed effects models for continuous variables (*t* is reported) and generalized linear models for categorical variables (*z* is reported).

* The socioeconomic index was derived from a survey administered at enrollment to determine whether participants owned 12 household items. Subsequently, we discarded 6 items with correlations with the total score of <0.1. Removing these items improved the internal consistency of the index from Cronbach’s *α* = 0.41 to 0.57. The 6 remaining items (owned a radio; a television; a refrigerator; a bike; a motorbike; and a small sales business, such as selling snacks, commonly operated out of the home) were summed for a total score.
the aforementioned sample of children aged 30 to 55 months, was 0.07, indicating that this score increased by \(\sim 0.07\) SD with each month of age. Therefore, the effect of MMNs in children of undernourished mothers represents an advantage equivalent to \(\sim 5\) months of age. Both the effects on motor and visual attention/spatial ability in children of undernourished mothers were slightly stronger in the analyses adjusting for the covariates (B = 0.39 and B = 0.37, respectively).

The mean z score for each domain in children of mothers who received IFA and MMNs stratified on the basis of the mother’s MUAC is presented in Fig 2.

TABLE 4 Effect of MMNs on Motor, Cognitive, and Socioemotional Domain Scores

<table>
<thead>
<tr>
<th>Domain</th>
<th>Adjusted for Cluster Randomization</th>
<th>Adjusted for Cluster Randomization and Other Covariates That Independently Predicted Each Domain Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Estimate (95% CI)</td>
</tr>
<tr>
<td>Motor development</td>
<td>473</td>
<td>0.12 (0.08 to 0.32)</td>
</tr>
<tr>
<td>Language development</td>
<td>487</td>
<td>0.00 (0.20 to 0.19)</td>
</tr>
<tr>
<td>Visual attention/spatial ability</td>
<td>479</td>
<td>0.08 (0.00 to 0.24)</td>
</tr>
<tr>
<td>Executive function</td>
<td>476</td>
<td>-0.06 (0.21 to 0.09)</td>
</tr>
<tr>
<td>Socioemotional development</td>
<td>487</td>
<td>-0.02 (0.16 to 0.12)</td>
</tr>
</tbody>
</table>

The estimate of the effect of MMNs represents the difference in scores between children of mothers who received MMNs and IFA, expressed as a fraction of the variation (SD) of the score. Positive estimates indicate that those who received MMNs scored higher than those who received IFA, CI, 95% confidence interval.

a Adjusted for HOME inventory score and compliance (mean percentage of supplements consumed).
b Adjusted for HOME inventory score and child’s age at enrollment.
c Adjusted for HOME inventory score and maternal education.
d Adjusted for HOME inventory score and birth weight.

Children of Anemic Mothers

Children of undernourished mothers who received IFA scored substantially lower in motor development (mean: -0.28) and visual attention/spatial ability (mean: -0.35) than all other groups (mean: 0.01–0.10). Children of undernourished mothers who received MMNs had scores (mean: 0.07 for motor ability and 0.01 for visual attention/spatial ability) similar to children of mothers who were not undernourished in either supplement group (mean: 0.01–0.10). This finding suggests that maternal MMN supplementation protected children of undernourished mothers from negative developmental effects of the mother’s poor nutritional status during pregnancy.

DISCUSSION

In a randomized trial in Indonesia that examined the effects of maternal MMN supplementation, compared with IFA, on the motor, cognitive, and socioemotional abilities of children at age 42 months, the following results were found. No significant effects were found for children overall, except in the adjusted analysis on motor development. Stratified analysis showed that this

TABLE 5 Effect of MMNs on Motor Development and Visual Attention/Spatial Ability in Stratified Analyses

<table>
<thead>
<tr>
<th>Domain</th>
<th>Adjusted for Cluster Randomization</th>
<th>Adjusted for Cluster Randomization and Other Covariates That Independently Predicted Each Domain Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Estimate (95% CI)</td>
</tr>
<tr>
<td>Motor development</td>
<td>139</td>
<td>0.35 (0.01 to 0.69)</td>
</tr>
<tr>
<td>Mother’s MUAC <23.5 cm</td>
<td>280</td>
<td>-0.06 (0.31 to 0.19)</td>
</tr>
<tr>
<td>Visual attention/spatial ability</td>
<td>140</td>
<td>0.35 (0.08 to 0.63)</td>
</tr>
<tr>
<td>Mother’s MUAC ≥23.5 cm</td>
<td>284</td>
<td>-0.10 (–0.29 to 0.09)</td>
</tr>
<tr>
<td>Visual attention/spatial ability</td>
<td>222</td>
<td>0.23 (0.00 to 0.46)</td>
</tr>
<tr>
<td>Mother’s Hb <110 g/L</td>
<td>253</td>
<td>-0.07 (–0.28 to 0.15)</td>
</tr>
</tbody>
</table>

The estimate of the effect of MMNs represents the difference in scores between children of mothers who received MMNs and IFA, expressed as a fraction of the variation (SD) of the score. Positive estimates indicate that those who received MMNs scored higher than those who received IFA. The interaction term P value represents the P value associated with the interaction between maternal supplement type and the stratification variable (mother’s MUAC or Hb). CI, 95% confidence interval.

a Adjusted for HOME inventory score.
b Adjusted for HOME inventory score.
c Adjusted for HOME inventory score.
Effect on motor development was found only in children of mothers who were undernourished during pregnancy and was equivalent to ∼4.5 months of age. Maternal MMN supplementation also yielded advantages in visual attention/spatial ability in 2 subgroups of children: children of mothers who were undernourished during pregnancy, equivalent to ∼5 months of age, and children of mothers who were anemic during pregnancy, equivalent to ∼3 months of age. These findings have several implications.

First, these results demonstrate that adequate maternal micronutrient intake is necessary for intact brain development, a conclusion that in the past has largely depended on animal models. Although acute maternal deficiencies in certain micronutrients are known to result in severe neurologic impairment (eg, maternal iodine deficiency resulting in cretinism), the effect of mild to moderate micronutrient deficiencies during pregnancy in humans has not yet been clarified. The finding that children of undernourished mothers who received IFA performed at substantially lower motor and cognitive levels compared with those who received MMNs and compared with children of well-nourished mothers (Fig 2) suggests that supplementation with IFA alone is insufficient to protect against negative long-term developmental effects of maternal undernutrition. The MMN supplement in the current study contained iodine, zinc, and vitamin B6, all of which are important for brain development. Maternal iodine supplementation has been found to improve motor and cognitive development in several studies. Maternal zinc supplementation has been found to improve muscle mass in 12-month-old infants, which could lead to improved motor development, although improvements in motor development have not been observed in 2 other studies of maternal zinc supplementation. Thus, adequate intake of other micronutrients in addition to iron/folic acid during pregnancy and lactation seems to be important for healthy motor and cognitive development.

Second, the finding that MMN supplementation benefited these children’s motor and cognitive abilities in undernourished mothers is consistent with previous evidence that maternal MMN supplementation can provide other important advantages, such as reductions in low birth weight and infant mortality 3 months postpartum, and suggests that these advantages extend beyond gestational and early infant health outcomes. The finding is also consistent with the positive findings of the 3 previous studies that examined the effect of MMN supplementation on Bayley Scales of Infant Development mental and motor scores and provides important additional elements, such as the evaluation of multiple domains of early child development and the careful adaptation of the tests to the local setting. Perhaps most importantly, whereas those studies focused on infants (up to age 18 months), the current study examined children at 42 months of age. Infant development scores are generally poor predictors of later cognitive abilities; in contrast, those scores of children ages 3 to 7 years predict later outcomes such as school achievement, which in turn leads to higher skilled employment and higher wages in adulthood. The fact that we found a benefit of MMN supplementation...
in visual attention/spatial ability is intriguing because focusing and sustaining attention are important skills for school success. Moreover, attention measured before and during elementary school has been found to predict school achievement up to 5 years later. Thus, the results obtained here suggest that maternal MMN supplementation might have much longer-term advantages for children of undernourished and anemic mothers. Third, the finding that the motor and cognitive benefits were observed primarily in the children of mothers who were undernourished or anemic during pregnancy is consistent with previous studies that have observed a particular benefit of MMN supplementation in these subgroups on infant survival, maternal cognition, and infant motor development, although not on birth weight. Together, these findings suggest that micronutrient deficiency may be especially problematic among these subgroups, and that these mothers and their children particularly benefit from MMN supplementation during pregnancy and postpartum in certain important outcomes. Given that some studies have found no differences between maternal MMN and IFA supplementation on neonatal infant mortality or on cognitive performance at age 7 to 9 years, this highlights the importance of examining effects in subgroups of mothers who are particularly likely to benefit from MMN supplementation.

We found no effects on language, executive, or socioemotional skills. One limitation of this study was that the children were tested at an age in which a wide variation in performance is normal. For example, because a wide variation in language ability falls within a normal range at age 3 years, it may be difficult to detect effects in language development at this age. Another limitation was that the tests of executive function in the current study primarily assessed inhibition ability (in both the Snack Delay and Windows tests) and, to some extent, task switching (in the Windows test). In later childhood, it becomes easier to assess other aspects of executive function, including planning and task monitoring, which might be more sensitive to maternal MMN supplementation. A third limitation was that our measure of socioemotional development relied on parent report rather than direct assessment of the child, which may also be more sensitive to effects of maternal MMN supplementation.

CONCLUSIONS

Our findings suggest that, in a population such as that examined here in Indonesia, maternal MMN supplementation compared with IFA supplementation can improve the motor and cognitive abilities of children as late as 3.5 years, in particular when women are undernourished or anemic during pregnancy, and especially for motor function and visual attention/spatial ability. The loss of developmental potential in early childhood is a critical problem in low- and middle-income countries. The findings suggest that providing MMN supplements to mothers during pregnancy and lactation, particularly to those who are undernourished or anemic, is an effective intervention to address this loss and to promote healthy motor and cognitive development in children.

ACKNOWLEDGMENTS

The SUMMIT Study Group designed and executed the SUMMIT study. We acknowledge the substantial contribution of Dr Abas Jahari in the support and completion of the study. Sri Hartini, Astri Hidayanti, Siti Nurul Hikmah, Baqi Elfia Ismayani, Atik Rahmawati, and Fitrianti conducted pilot testing, test adaptation, and data collection. Nurhafni, Indah Qoriana, Rosmwarty, and Nuniks I. Gayatri provided administrative support. Farhiyah, Nurmawati, and Maryati transcribed child speech samples to validate the parent-reported language measure.

REFERENCES

9. Morré DM, Kirksey A, Das GD. Effects of vitamin B-6 deficiency on the developing

22 Raghunathan TE, Lepkowski JM, Van Hoewyk J, Solenberger P A. A multivariate technique for multiple imputing missing values using a sequence of regression models. Surv Methodol. 2001;27(1):85–95

Address correspondence to Elizabeth L. Prado, PhD, SUMMIT Institute of Development, Kantor Bappeda Provinsi Nusa Tenggara Barat, Lantai 2, Jalan Flamboyan No 2, Mataram, NTB, Indonesia. E-mail: elprado@ucdavis.edu and Katherine Alcock, DPhil, Department of Psychology, Lancaster University, Bailrigg, Lancaster; LA1 4YF, United Kingdom. E-mail: k.j.alcock@lancaster.ac.uk

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).

Copyright © 2012 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

FUNDING: Support for this project was provided by the Allen Foundation, a National Science Foundation Graduate Research Fellowship, the Turner Foundation, UNICEF, the Centre for Health and Human Development, and the United States Agency for International Development–Indonesia (grant 497-G-00-01-00001-00). The sponsors of the study had no role in the study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.
Maternal Multiple Micronutrient Supplements and Child Cognition: A Randomized Trial in Indonesia
Elizabeth L. Prado, Katherine J. Alcock, Husni Muadz, Michael T. Ullman and Anuraj H. Shankar

Pediatrics 2012;130;e536; originally published online August 20, 2012; DOI: 10.1542/peds.2012-0412

Updated Information & Services
including high resolution figures, can be found at:
/content/130/3/e536.full.html

Supplementary Material
Supplementary material can be found at:
/content/suppl/2012/08/15/peds.2012-0412.DCSupplemental.html

References
This article cites 38 articles, 10 of which can be accessed free at:
/content/130/3/e536.full.html#ref-list-1

Citations
This article has been cited by 3 HighWire-hosted articles:
/content/130/3/e536.full.html#related-urls

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Nutrition
/cgi/collection/nutrition_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2012 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.
Maternal Multiple Micronutrient Supplements and Child Cognition: A Randomized Trial in Indonesia
Elizabeth L. Prado, Katherine J. Alcock, Husni Muadz, Michael T. Ullman and Anuraj H. Shankar
Pediatrics 2012;130:e536; originally published online August 20, 2012;
DOI: 10.1542/peds.2012-0412

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/130/3/e536.full.html