Hyponatremia-Associated Rhabdomyolysis Following Exercise in an Adolescent With Cystic Fibrosis

abstract

Adolescents with well-controlled cystic fibrosis, including good lung function and appropriate growth, commonly participate in competitive athletic activities. We present the case of an adolescent male with cystic fibrosis, hyponatremia, dehydration, and rhabdomyolysis after participating in football practice on a summer morning. The patient presented with severe myalgia and serum sodium of 129 mmol/L, chloride 90 mmol/L, and creatine phosphokinase 1146 U/L. Aggressive hydration with intravenous 0.9% saline resulted in clinical improvement with no renal or muscular sequelae. Health care providers need to educate patients with cystic fibrosis about maintaining adequate hydration and sodium repletion during exercise. Research is needed regarding the appropriate amount and composition of oral rehydration fluids in exercising individuals with cystic fibrosis, as the physiology encountered in these patients provides a unique challenge to maintaining electrolyte balance and stimulation of thirst. Pediatrics 2012;130:e220–e223

AUTHORS: Jillian Kaskavage, BS, and Daniel Sklansky, MD
Department of Pediatrics, University of Illinois College of Medicine at Rockford, Rockford, Illinois

KEY WORDS
Cystic fibrosis, dehydration, hyponatremia, rhabdomyolysis, adolescent

ABBREVIATIONS
CF—cystic fibrosis
CK—creatine kinase

www.pediatrics.org/cgi/doi/10.1542/peds.2011-1200
doi:10.1542/peds.2011-1200
Accepted for publication Feb 2, 2012
Address correspondence to Jillian Kaskavage, BS, University of Illinois College of Medicine at Rockford, 1801 Parkview Ave, Rockford, IL. E-mail: jkaska2@uic.edu

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).
Copyright © 2012 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

FUNDED: No external funding.
Cystic fibrosis (CF) is an autosomal recessive disorder involving multiple systems that can cause progressive lung disease, pancreatic insufficiency, and chronic malnutrition in children. As treatments have improved, many children with CF are now well nourished and growing at normal rates. As older children and adolescents, they often engage in competitive athletic activities despite their fundamentally altered physiology. We report exercise-induced hyponatremia and dehydration with rhabdomyolysis in an athletic adolescent with CF.

CASE REPORT

A 14-year-old otherwise healthy boy with well-controlled CF presented to the emergency department complaining of severe muscle soreness in the calves, thighs, arms, and back persisting several hours after completing a football training session on a summer morning. The practice lasted 3 hours and consisted mostly of sprints and distance runs. The ambient temperature ranged from 80 to 88°F. He reported consuming 60.0 kg at his last office visit 8 days prior.

His last hospitalization at age 10 years was for a pulmonary exacerbation requiring a brief inpatient stay for intravenous antibiotics. He had been in good health and had no difficulty keeping up with his peers in athletic activities. Vital signs were within normal limits, aside from an elevated heart rate of 95 beats per minute compared with baseline in the 60s. He weighed 56.6 kg compared with 60.0 kg at his last office visit 8 days prior. He was alert and oriented to person, place, and time. Physical examination was notable for tenderness to palpation of multiple muscle groups, but was otherwise unremarkable. Laboratory testing revealed serum sodium of 129 mmol/L, chloride 90 mmol/L, bicarbonate 22 mmol/L, creatinine 1.2 mg/dL, and serum urea nitrogen 19 mg/dL. Unfortunately, no previous metabolic panels were available for comparison. Creatine kinase (CK) was 1146 U/L (normal 39–308 U/L). White blood cell count was elevated at 19900 with a normal differential. Hemoglobin and hematocrit were within normal limits at 16.6 g/L and 48.0%, respectively, but elevated above his baseline of 15.3 g/L and 44.8%. Uralysis was normal with a specific gravity of 1.003, but was not obtained until ~90 minutes after intravenous fluids were given. The patient was given a bolus of 2 L of intravenous normal saline over the first 2 hours, and a third liter at a rate of 500 mL/h per protocol for treatment of rhabdomyolysis in adults. The rate was reduced to twice maintenance on the ward to avoid pulmonary edema in the context of this patient’s underlying lung disease. Subsequent laboratory testing 6 hours after presentation revealed sodium of 134 mmol/L and CK of 2562 U/L despite aggressive hydration. The patient was discharged the following morning with resolution of pain, good urine output, a serum sodium of 136 mmol/L and a stabilized CK of 2625 U/L. He did not suffer any significant renal or muscular sequelae, as evidenced by no muscle weakness, improvement in pain, and normal urination at follow-up with his primary care physician the next week. His serum urea nitrogen and creatinine 8 weeks later were 16 mg/dL and 0.8 mg/dL, respectively, at an emergency department visit for constipation. He was instructed about the importance of hydration with exercise, especially in hot weather. With no evidence-based guidelines available for exercising adolescents with CF, we recommended consuming high-electrolyte sports beverages such that he felt the need to urinate at least every 2 hours, and to stop exercising if he could not drink at least that much.

DISCUSSION

Our report highlights a previously unreported complication in healthy, athletic children with CF. In addition to maintaining adequate growth and lung function through appropriate nutrition, pulmonary toilet, and medication adherence, patients with CF can improve their health through regular exercise. Participation in sports allows patients with CF to join peers in normal childhood activities and to enjoy the benefits of exercise. Several studies have shown the benefits of exercise in patients with CF, including improved exercise capacity and possible preservation of pulmonary function with aerobic exercise. Possible complications of exercise in children with CF include pneumothorax, hypoglycemia, musculoskeletal injury, and cardiac arrhythmia. There have been no previously published case reports on hyponatremic dehydration with rhabdomyolysis in patients with CF. Our patient demonstrated oliguria with hyponatremia and hypochloremia consistent with hyponatremic dehydration. The elevated CK and intense myalgia on physical examination are consistent with rhabdomyolysis, which was likely caused by a combination of factors, including dehydration, hyponatremia, and intense physical activity. The degree of hyponatremia at the time of presentation was milder than in previous reports of rhabdomyolysis, in which serum sodium levels ranged from 110 to 115 mmol/L. We believe that it is reasonable to consider that the hyponatremia contributed to the muscle injury. Children with CF are probably more susceptible to dehydration with exercise than are healthy children for several reasons, including increased salt and water losses from the skin and an impaired thirst response. Decreased thirst drive in patients with CF, termed voluntary dehydration, has been hypothesized to be the result of hyperosmotic sweat, which results in
TABLE 1 Electrolyte and Carbohydrate Concentrations of Popular Sports Drinks (With Unit Conversion from mg/8 oz to mmol/L)

<table>
<thead>
<tr>
<th>Beverage</th>
<th>Sodium (mg/8 oz</th>
<th>mmol/L)</th>
<th>Potassium (mg/8 oz</th>
<th>mmol/L)</th>
<th>Carbohydrate (% daily value/8 oz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gatorade15</td>
<td>110</td>
<td>19.9</td>
<td>30</td>
<td>3.2</td>
<td>6</td>
</tr>
<tr>
<td>Powerade16</td>
<td>100</td>
<td>18.1</td>
<td>25</td>
<td>2.7</td>
<td>6</td>
</tr>
<tr>
<td>All Sport17</td>
<td>55</td>
<td>10.0</td>
<td>60</td>
<td>6.4</td>
<td>6</td>
</tr>
<tr>
<td>Propel Zero18</td>
<td>80</td>
<td>14.5</td>
<td>20</td>
<td>2.1</td>
<td>0</td>
</tr>
<tr>
<td>SoBe Life Water19</td>
<td>25</td>
<td>4.5</td>
<td>25</td>
<td>2.7</td>
<td>2</td>
</tr>
</tbody>
</table>

Pediatrics, advises the consumption of sports drinks that contain significant quantities of electrolytes for this population. UpToDate extrapolates recommendations from the Cystic Fibrosis Foundation’s data on infant requirements. Exercise has also led to rhabdomyolysis and hyponatremia in patients who do not have CF. There are no evidence-based guidelines for the exercising adolescent population with CF. Most popular textbooks endorse increased sodium intake, but lack specific recommendations. The Pediatric Nutrition Handbook, published by the American Academy of Pediatrics, recommends the consumption of sports drinks that contain significant quantities of electrolytes for this population. The additional salt increases the hyposmotic serum, thus diminishing the hypothalamic stimulus for thirst. Fluid replenishment with high sodium chloride content has been shown to stimulate thirst and to prevent a significant serum sodium decrease.

Patients with CF may be at increased risk for rhabdomyolysis during exercise, given their propensity for dehydration and hyponatremia. Previously reported hyponatremia-induced rhabdomyolysis in patients who do not have CF has been associated with diuretic use, psychogenic polydipsia, and extreme exercise with water intoxication. Exercise has also led to rhabdomyolysis and hyponatremia in patients who do not have CF. There are no evidence-based guidelines for the exercising adolescent population with CF. Most popular textbooks endorse increased sodium intake, but lack specific recommendations.

The Pediatric Nutrition Handbook, published by the American Academy of Pediatrics, advises the consumption of sports drinks that contain significant quantities of electrolytes for this population. Exercise has also led to rhabdomyolysis and hyponatremia in patients who do not have CF. There are no evidence-based guidelines for the exercising adolescent population with CF. Most popular textbooks endorse increased sodium intake, but lack specific recommendations.

The Pediatric Nutrition Handbook, published by the American Academy of Pediatrics, advises the consumption of sports drinks that contain significant quantities of electrolytes for this population. Exercise has also led to rhabdomyolysis and hyponatremia in patients who do not have CF. There are no evidence-based guidelines for the exercising adolescent population with CF. Most popular textbooks endorse increased sodium intake, but lack specific recommendations.

Hyponatremia-Associated Rhabdomyolysis Following Exercise in an Adolescent With Cystic Fibrosis

Jillian Kaskavage and Daniel Sklansky

Pediatrics 2012;130;e220; originally published online June 4, 2012;
DOI: 10.1542/peds.2011-1200

Updated Information & Services

including high resolution figures, can be found at:
/content/130/1/e220.full.html

Subspecialty Collections

This article, along with others on similar topics, appears in the following collection(s):
Adolescent Health/Medicine
/cgi/collection/adolescent_health:medicine_sub

Permissions & Licensing

Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints

Information about ordering reprints can be found online:
/site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2012 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.
Hyponatremia-Associated Rhabdomyolysis Following Exercise in an Adolescent With Cystic Fibrosis
Jillian Kaskavage and Daniel Sklansky
Pediatrics 2012;130:e220; originally published online June 4, 2012;
DOI: 10.1542/peds.2011-1200

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/130/1/e220.full.html