The highest IgG4/IgE ratios were found in children who developed symptoms of food allergy despite having a positive skin-prick test (SPT) result. The study found that high food-specific IgG4/IgE ratios were related to oral tolerance to milk and egg at 4.5 years of age. The authors recommend that future studies to determine the usefulness of peanut-, tree nut-, and seed-specific immunoglobulin E (IgE) measurements for the diagnosis of allergic diseases and to learn more about the relationships among these foods.

**PURPOSE OF THE STUDY.** The authors of this study sought to determine the usefulness of peanut-, tree nut-, and seed-specific immunoglobulin E (IgE) measurements for the diagnosis of allergic diseases and to learn more about the relationships among these foods.

**STUDY POPULATION.** Children and adults (N = 324) referred to a private allergy practice and to an academic center allergy clinic for evaluation of peanut allergy. Of these, 86% had sensitization to peanut allergy. Of these, 86% had sensitization to peanut allergy. The majority of study patients had never ingested tree nuts, which made it difficult to determine the true prevalence of these nut allergies. Tree nut clinical allergy occurred with a frequency ranging from 16.4% for walnut to 1.5% for Brazil nut. Seventeen percent of the patients reported reactions to sesame seed. The ranges of increased serum-specific IgE levels for each food varied widely among patients with positive histories. The relationship between diagnoses and allergen-specific IgE levels was estimated through logistic regression, with curves illustrating the likelihood of receiving a positive clinical diagnosis in relation to the specific IgE concentration. Positive predictive values were established for peanut and walnut (13 and 18.5 kU/L, respectively) but with sensitivities of just 60% and 17%, respectively. High correlations were found between IgE results for walnut and pecan and between those for cashew and pistachio.

**CONCLUSIONS.** Quantification of food-specific IgE is a valuable tool that can aid in the diagnosis of allergic diseases and might decrease the need for double-blind, placebo-controlled, food challenges.
In Vitro and In Vivo Cross-reactivity Studies of Legume Allergy in a Mediterranean Population


PURPOSE OF THE STUDY. Legume allergy, mainly to lentils and chickpeas, is the fifth most common cause of food allergy in Spanish children. Serological cross-reactivity among legumes is frequent, but its clinical relevance is controversial. The aim of this study was to investigate the cross-reactivity among lentils, chickpeas, peas, white beans, and peanuts and its clinical relevance in pediatric patients.

STUDY POPULATION. Fifty-four children with clinical allergy to legumes were included.

METHODS. Cross-reactivity was evaluated with enzyme-linked immunosorbent assay inhibition experiments and oral food challenges to legumes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis immunoblots were conducted with raw and boiled legume extracts.

RESULTS. Enzyme-linked immunosorbent assay inhibition experiments demonstrated >80% inhibition with lentil, chickpea, and pea extracts. Immunoblots performed with raw legume extracts (lentil, chickpea, and pea) and individual sera revealed that >50% of the sera identified an allergen of ~50 kDa in all 3 legume extracts. In all 3 boiled extracts, an intense band at ~50 kDa was visualized by using a serum pool. The oral legume challenges demonstrated that 37 children (69%) were allergic to ≥2 legumes (median: 3 legumes). The most frequent associations were allergy to lentils and chickpeas (57%), allergy to lentils and peas (54%), and allergy to lentils, chickpeas, and peas (43%).

CONCLUSIONS. In vitro inhibition experiments demonstrated a high degree of cross-reactivity among lentils, chickpeas, and peas. Food challenges confirmed that clinical allergy to all 3 legumes is frequent in this cohort of Spanish children.

REVIEWER COMMENTS. Although legumes are not major allergens in the United States and some European countries, they are a common cause of food allergies in Mediterranean countries. The authors demonstrated that, in their group of Spanish children, there was a high degree of in vitro and in vivo cross-reactivity among legumes, which is in contrast to North American children, in whom clinical reactivity to >1 legume is considered to be infrequent (eg, children with peanut allergy typically tolerate most legumes). These contrasting results highlight the fact that genetic and dietary influences (among other factors) can have significant influences on food allergy. Additional studies are needed to elucidate the contribution of dietary habits and genetics to food allergy.

Epidemiology of Atopy Patch Tests With Food and Inhalant Allergens in an Unselected Population of Children


PURPOSE OF THE STUDY. The atopy patch test (APT) has been used as a diagnostic tool for patients with suspected food or inhalant allergy. The authors of this study assessed the prevalence of positive APT results with food or inhalant allergens in an unselected population of schoolchildren. The authors also evaluated the link between positive APT reactions and skin-prick tests (SPTs) for food and inhalant allergens, circulating eosinophils, and histamine skin reactivity.

STUDY POPULATION. The study included an unselected population of 380 children 9 or 13 years of age living in Rome, Italy.

METHODS. APTs were carried out with food (native or standardized) and inhalant allergens. All children also underwent SPTs with 5 common inhalant and 4 food allergens.

RESULTS. The prevalence of positive APT reactions for foods in unselected children ranged between 4% and 11% for hen’s egg, tomato, and wheat flour and was similar for the 2 age groups studied. The prevalence of
The Use of Serum-Specific IgE Measurements for the Diagnosis of Peanut, Tree Nut, and Seed Allergy
James R. Banks and Timothy Andrews
Pediatrics 2009;124;S122
DOI: 10.1542/peds.2009-1870AA
The Use of Serum-Specific IgE Measurements for the Diagnosis of Peanut, Tree Nut, and Seed Allergy
James R. Banks and Timothy Andrews

*Pediatrics* 2009;124;S122
DOI: 10.1542/peds.2009-1870AA

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/124/Supplement_2/S122.full.html