adults who were long-term nonprogressors or those whose conditions continued to progress despite antiretroviral therapy. The subjects with a dominant IL-2 response had very low levels of viremia and had not experienced viral “blips” over the previous 2 years. This pattern was similar to that generally observed in individuals who have cleared the infecting agent. It is important to note that this pattern has not been observed in HIV-infected adults.

CONCLUSIONS. Children with HIV have a higher frequency of HIV-specific CD4+ T cells compared with adults, and their recovery of an IL-2-secreting T-cell pattern indicates a greater capacity for immune restoration in children than adults.

REVIEWER COMMENTS. This elegant study provides a biological rationale for the clinical observation that young children started on antiretroviral therapy have the capacity for remarkable reconstitution of immune functions relative to those reported in adults and older children who have been infected for prolonged periods before antiretroviral therapy. Perhaps it is unfair to compare these results with findings in adults that included patients who were infected for many years before their initiation of therapy. A more appropriate comparative adult group would be those treated within 6 months of their diagnosis. Most importantly, this study demonstrates that children are “different” and that treatment early in infection allows excellent immune reconstitution if viral replication is completely controlled.

Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen

PURPOSE OF THE STUDY. The HIV genome encodes only 15 proteins and, therefore, must use multiple host-cell collaborators for successful replication and transmission. Required host-derived proteins include CD4 as the primary virus receptor and chemokine receptors as coreceptors. This study identified multiple other host proteins required for HIV activity.

METHODS. Human cells known to be susceptible to HIV were exposed in vitro to HIV. Using small interfering RNAs able to inhibit each known gene in the human genome 1 at a time, the investigators tested whether HIV could establish an infection and copy itself. HIV dependence on >21 000 human genes was examined.

RESULTS. More than 250 human genes were identified to be required for efficient HIV replication. Termed “HIV-dependency factors,” the products of these genes are known to participate in a broad array of cellular functions and implicate unsuspected pathways in the virus life cycle.

CONCLUSIONS. The extraordinary dependence of HIV on human host proteins for efficient transmission and replication provides many new potential targets for antiretroviral therapy.

REVIEWER COMMENTS. An example of targeting host proteins is the use of chemokine receptor 5 (CCR5) inhibitors. Many people with CCR5 deficiency are very resistant to HIV infection yet have limited if any clinical consequences. Maraviroc CCR5 inhibitor is approved for treatment for HIV infection. This study identified many more such potential targets.

Proteinuria in Children Infected With the Human Immunodeficiency Virus

PURPOSE OF THE STUDY. Proteinuria is a common feature of HIV infection and a potential complication of therapy in adult patients. This study was performed to determine the prevalence of proteinuria in a group of children infected with HIV and to assess this process over time and the impact of antiretroviral therapy on it.

STUDY POPULATION. HIV-infected children (N = 286) were studied from 1998 through 2006.

METHODS. Proteinuria was determined by random urine protein/creatinine ratios, with “normal” defined as <0.2 and “nephrotic” defined as >1.0.

RESULTS. A total of 94 (33%) of the children had proteinuria at baseline. Of these, 32 had urine protein range ratios of ≥1.0. Clinically, the mortality rate was higher in those patients with proteinuria. It is important to note that 55 of the 94 patients with baseline proteinuria showed a good response to antiretroviral therapy, as indicated by a decrease in HIV viral load and a substantial reduction in the number of subjects who had proteinuria.

CONCLUSIONS. Control of HIV viremia with antiretroviral therapy reduces progression of HIV-associated proteinuria and improves the survival rate of infected children.

REVIEWER COMMENTS. Proteinuria is a common feature of HIV infection in children. Two features of this patient popu-
Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen
Joseph A. Church

Pediatrics 2008;122;S226
DOI: 10.1542/peds.2008-2139

Updated Information & Services
including high resolution figures, can be found at:
/content/122/Supplement_4/S226.1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Infectious Disease
/cgi/collection/infectious_diseases_sub
HIV/AIDS
/cgi/collection/hiv:aids_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2008 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.
Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen
Joseph A. Church
Pediatrics 2008;122:S226
DOI: 10.1542/peds.2008-2139IIII

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/122/Supplement_4/S226.1