sisted of nursing visits designed to decrease environmental allergen and tobacco-smoke exposure and improve the quality of maternal caregiving and illness management. Psychosocial information was used to individualize plans for behavior change.

RESULTS. The percentage of children with asthma at 4 years of age did not differ significantly between the 2 groups (intervention and control) ($P = .33$). However, among children with lower symptom severity at study entry, the odds of developing asthma were 3 times lower for those in the intervention group ($P = .04$). Caregiver quality of life was significantly better ($P = .01$) and symptom severity was lower ($P = .03$) for those in the intervention group. It is interesting to note that asthma rates did not differ significantly for children whose mothers had asthma or for those found to be atopic (≥ 1 positive skin-test result).

CONCLUSIONS. Multifaceted intervention was unsuccessful as a secondary intervention in decreasing the development of asthma in this cohort as a whole. However, asthma development was ameliorated in children with low symptom severity in infancy.

REVIEWER COMMENTS. The nonmedical interventions, performed in a relatively small cohort, were ineffective in altering the progression from infant wheezing to persistent asthma at 4 years of age. However, they did have a significant positive effect on the caregivers’ quality of life compared with those in the control group. The authors hypothesized that children with lower severity at baseline may be more susceptible to changes in environmental exposures or illness-related caregiving. However, the study did not ensure that children with more severe symptoms received appropriate treatment with inhaled corticosteroids or that the medications were administered appropriately. This may explain why only children with milder disease benefited from environmental interventions. The investigators plan to follow these children until the age of 7 years.

URL: www.pediatrics.org/cgi/doi/10.1542/peds.2008-2139Q

Jennifer S. Kim, MD
Chicago, IL

TOBACCO AND AIR POLLUTION

Home Exposures to Environmental Tobacco Smoke and Allergic Symptoms Among Young Children in Singapore

PURPOSE OF THE STUDY. To investigate the association of environmental tobacco smoke (ETS) exposure among preschool-aged children with allergic symptoms in homes in Singapore.

RESULTS. The percentage of children with asthma at 4 years of age did not differ significantly between the 2 groups (intervention and control) ($P = .33$). However, among children with lower symptom severity at study entry, the odds of developing asthma were 3 times lower for those in the intervention group ($P = .04$). Caregiver quality of life was significantly better ($P = .01$) and symptom severity was lower ($P = .03$) for those in the intervention group. It is interesting to note that asthma rates did not differ significantly for children whose mothers had asthma or for those found to be atopic (≥ 1 positive skin-test result).

CONCLUSIONS. Multifaceted intervention was unsuccessful as a secondary intervention in decreasing the development of asthma in this cohort as a whole. However, asthma development was ameliorated in children with low symptom severity in infancy.

REVIEWER COMMENTS. The nonmedical interventions, performed in a relatively small cohort, were ineffective in altering the progression from infant wheezing to persistent asthma at 4 years of age. However, they did have a significant positive effect on the caregivers’ quality of life compared with those in the control group. The authors hypothesized that children with lower severity at baseline may be more susceptible to changes in environmental exposures or illness-related caregiving. However, the study did not ensure that children with more severe symptoms received appropriate treatment with inhaled corticosteroids or that the medications were administered appropriately. This may explain why only children with milder disease benefited from environmental interventions. The investigators plan to follow these children until the age of 7 years.

URL: www.pediatrics.org/cgi/doi/10.1542/peds.2008-2139Q

Jennifer S. Kim, MD
Chicago, IL

Cigarette Smoke Exposure Impairs Dendritic Cell Maturation and T Cell Proliferation in Thoracic Lymph Nodes of Mice

PURPOSE OF THE STUDY. Airborne antigens are processed and presented by respiratory tract dendritic cells (DCs). The purpose of this study was to determine the consequences of cigarette-smoke exposure on DC function in mice.

METHODS. Mice were exposed to cigarette smoke 5 days per week for 1 month. There was also a control group of
Home Exposures to Environmental Tobacco Smoke and Allergic Symptoms Among Young Children in Singapore

Jennifer M. Maloney

Pediatrics 2008;122;S182

DOI: 10.1542/peds.2008-2139R

Updated Information & Services

including high resolution figures, can be found at:
/content/122/Supplement_4/S182.1

Subspecialty Collections

This article, along with others on similar topics, appears in the following collection(s):

- **Environmental Health**
 /cgi/collection/environmental_health_sub
- **Smoking**
 /cgi/collection/smoking_sub
- **Allergy/Immunology**
 /cgi/collection/allergy.immunology_sub

Permissions & Licensing

Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints

Information about ordering reprints can be found online:
/site/misc/reprints.xhtml
Home Exposures to Environmental Tobacco Smoke and Allergic Symptoms Among Young Children in Singapore
Jennifer M. Maloney
Pediatrics 2008;122:S182
DOI: 10.1542/peds.2008-2139R

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/122/Supplement_4/S182.1