increasing level of tobacco smoke exposure. In addition, systolic and diastolic blood pressure and BMI were independent predictors of the aortic elasticity indices. In multivariable models, cotinine level (P = .020) and systolic blood pressure (P < .001) were inversely associated with AC and directly related to SI (cotinine level, P = .005; systolic blood pressure, P = .0003). **CONCLUSIONS:** These data suggest that passive smoking is associated with decreased aortic elasticity in children, indicating early arterial changes.

EXPERIMENTAL RESEARCH OF SIMVASTATIN IN REVERSING PULMONARY VASCULAR REMODELING IN VIVO AND IN VITRO

Submitted by Hanmin Liu
Hanmin Liu, Bin Liu, Yimin Hua, Xiaoqin Wang, Li Yu, Tongfu Zhou
West China Second University Hospital, Sichuan University, Chengdu, China

INTRODUCTION: Simvastatin was predicted to be a potential inhibitor to pulmonary vascular remodeling. This novel reversion induced by simvastatin has remained an uncertain mechanism.

OBJECTIVE: Our goal was to explore the role of simvastatin as a potential inhibitor of pulmonary vascular remodeling.

METHODS: We established a neointimal pulmonary hypertensive rat model receiving monocrotaline after pneumonectomy. Simvastatin was administered after the operation. Hemodynamic and vascular remodeling corresponding indices were detected. GATA-6, a gene transcription factor, was evaluated in vivo. Proliferation and the cellular cycle were assessed in cultured vascular smooth muscle cells (VSMCs). α-SM-actin, F-actin, and paxillin were detected to evaluate the phenotype changes.

RESULTS: Neointimal changes developed in 88.5% of right lung intraacinar arteries after pneumonectomy and monocrotaline administration. Mean pulmonary artery pressure, the right ventricle/(left ventricle + S) ratio, and media wall thickness significantly increased in rats that had pneumonectomy and were treated with monocrotaline but decreased significantly in simvastatin-treated rats. The expression of GATA-6 markedly decreased in these rats and was significantly upregulated after receiving simvastatin. In vitro, the proliferation was significantly downregulated in VSMCs with simvastatin compared to that with platelet-derived growth factor. α-SM-actin increased significantly, and F-actin or paxillin was downregulated in simvastatin-treated rats.

CONCLUSIONS: Our data indicate that simvastatin is most likely a pulmonary vascular remodeling inhibitor, which may reverse the proliferation of VSMCs and phenotype changes. Simvastatin can also upregulate GATA-6 expression in lung tissue.
EXPERIMENTAL RESEARCH OF SIMVASTATIN IN REVERSING PULMONARY VASCULAR REMODELING IN VIVO AND IN VITRO
Hanmin Liu, Bin Liu, Yimin Hua, Xiaoqin Wang, Li Yu and Tongfu Zhou

Pediatrics 2008;121;S95
DOI: 10.1542/peds.2007-2022Q

Services
Updated Information & including high resolution figures, can be found at: http://pediatrics.aappublications.org/content/121/Supplement_2/S95.2
Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: https://shop.aap.org/licensing-permissions/
Reprints
Information about ordering reprints can be found online: http://classic.pediatrics.aappublications.org/content/reprints
EXPERIMENTAL RESEARCH OF SIMVASTATIN IN REVERSING PULMONARY VASCULAR REMODELING IN VIVO AND IN VITRO
Hanmin Liu, Bin Liu, Yimin Hua, Xiaoqin Wang, Li Yu and Tongfu Zhou
Pediatrics 2008;121:S95
DOI: 10.1542/peds.2007-2022Q

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/121/Supplement_2/S95.2