CONCLUSIONS: MVAD in pregnancy causes learning and memory impairment of adult offspring.

EFFECTS OF MARGINAL VITAMIN A DEFICIENCY ON LONG-TERM POTENTIATION IN YOUNG RATS

Submitted by Ting-Yu Li
Ting-Yu Li, Chun-Ting Mao, Hong-Mei Huang, You-Xue Liu, Ping Qu, Li Yang
Children’s Hospital, Chongqing Medical University, Chongqing, China

INTRODUCTION: Vitamin A is an essential micronutrient for brain development. Marginal vitamin A deficiency (MVAD) remains a subclinical public health problem in children, but little is known about the mechanism by which it affects brain development beginning from embryonic period and early postnatal period.

OBJECTIVE: The objective of this study was to study the effects of MVAD on the hippocampal CA1 long-term potentiation (LTP) in young rats.

METHODS: The MVAD group was fed a vitamin A–deficient diet (400 IU/kg vitamin A), and the control group was fed a vitamin A–sufficient diet (6500 IU/kg vitamin A) at 3 weeks before coitus. Serum vitamin A was assessed by high-performance liquid chromatography. Hippocampal CA1 LTP was detected by electrophysiologic technique, and the ultrastructure of synapses was observed by electron microscope.

RESULTS: The changes of field excitatory postsynaptic potentials slope (25.4% ± 2.01%) in MVAD rats aged 7 weeks was much lower than that in the control group (57.5% ± 8.6%). The changes of slope of field excitatory postsynaptic potentials induced by MVAD in young rats could be replenished after addition of retinoic acid (RA); however, LTP impairment was observed again after addition of RA antagonist into the solution of the control group. No differences of LTP were found after addition of FeSO$_4$ or ZnSO$_4$. The curvature of the synaptic interface of the MVAD group was less than that of the MVAD group that was supplemented with RA and of the control group.

CONCLUSIONS: MVAD during the embryonic and early postnatal period can directly impair the hippocampal CA1 LTP of young rats.

EFFECT OF BCG VACCINATION ON SPLENIC DENDRITIC CELL DEVELOPMENT IN NEONATAL BALB/C MICE

Submitted by Enmei Liu
Liu Enmeia, Liu Chunhuaa, He Yunb, Liu Weib, Li Xinc, Jiang Lipingb, Yang Xiqiangb

INTRODUCTION: As an immunoregulator, Mycobacterium BCG has the potential to be applied in allergic disease such as asthma prevention in clinic. Previous studies showed that neonatal BCG vaccination promoted mouse splenic T helper 1 development.

OBJECTIVE: The objective of this study was to investigate further the impact of BCG vaccination on dendritic cell (DC) development in neonatal mice.

METHODS: Neonatal and adult BALB/C mice were divided into 2 groups: the control group and the BCG-treated group in which BALB/C mice were inoculated with 1×10^5 colony-forming units of BCG intraperitoneally. After 4 weeks, splenic cells were isolated and co-stimulatory molecules and major histocompatibility complex molecules were analyzed by flow cytometry on CD11c-positive cells.

RESULTS: CD11c$^+$CD8α$^+$ and CD11c$^+$CD8α$^-$ DCs were found in spleen cells of BALB/C mice. In comparison with the control group, the percentage of CD8α$^-$ DCs was significantly decreased (45.00 ± 14.14 vs 67.00 ± 8.27) and that of CD8α$^+$ DCs was strikingly increased (55.00 ± 14.14 vs 33.00 ± 8.27) in BCG-treated neonatal mice. In contrast, the percentage of CD8α$^-$ DCs markedly increased from 57% to 70% and that of CD8α$^+$ DCs noticeably decreased from 43% to 30% in adult mice that were vaccinated. BCG vaccination upregulated the expression of co-stimulatory molecules on DC in adult and neonatal mice.

CONCLUSIONS: Our results indicate that development of T cells was induced by BCG vaccination through an effect on DC differentiation and maturation in BALB/C mice, possibly not only by DC phenotype but also by cytokines.

IMPACT OF ZINC SUPPLEMENTATION ON RESPIRATORY AND GASTROINTESTINAL INFECTIONS: A DOUBLE-BLIND, RANDOMIZED TRIAL AMONG URBAN IRANIAN SCHOOLCHILDREN

Submitted by Nahid Masoodpoor
Nahid Masoodpoor, Shokoofeh Darakhshand, Darakhshan Darakhshan, Seyed Taghi Tabatabaei, Seyed Abualghasem Mosavat
Ali-Ebn-Abitaleb Medical Hospital, Rafsanjan, Iran

INTRODUCTION: In addition to inhibiting growth, mild zinc deficiency is probably associated with reduced resistance to infection in children, but it has been difficult to establish this link; however, children with severe
SEVERE LUNG HYPOPLASIA IS OBSERVED IN DHCR24-KNOCKOUT MICE: A MOUSE MODEL OF DESMOSTEROLOSIS

Submitted by Rusella Mirza
Rusella Mirzas, Sizu Hayasakab, Takehide Kajic, Yoshiharu Muratab, Hisao Seoa
Departments of aEndocrinology and bTeratology and Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; cPharmaceuticals Research Unit, Research and Development Division, Mitsubishi Pharma Corporation, Yokohama, Japan

INTRODUCTION: The DHCR24 gene encodes an enzyme that converts desmosterol to cholesterol in the last step of cholesterol synthesis. Desmosterolosis is an autosomal-recessive disorder that is caused by mutation in the DHCR24 gene, resulting multiple developmental anomalies.

OBJECTIVE: The objective of this study was to understand the pathophysiology of desmosterolosis.

METHODS: DHCR24-knockout mice were used in this study. All homozygous mice (−/−) died soon after birth. DHCR24−/− mice demonstrated features of lethal restrictive dermopathy, associated with impaired skin barrier function as a result of hyperproliferation of undifferentiated keratinocytes throughout the epidermis. One other possible cause for neonatal death in DHCR24−/− mice is respiratory failure, as evidenced by severe cyanosis immediately after birth. We therefore studied the lung development of these mice. Lungs from the newborn alive pups were subjected to weight measurement and histologic and Western blot analyses.

RESULTS: DHCR24−/− mice were identified by their phenotype and genotyping. Lung-to-body weight ratio was decreased in DHCR24−/−. The space between lung surface and the thoracic wall was significantly increased as a result of less expansion of the lung. The majority of the lung portion consisted of collapsed alveoli and decreased saccular space in DHCR24−/− mice. No differentiation defect in alveolar type I cell was detected by Western blot and immunohistochemistry with anti-T1 α antibody, a type I cell-specific marker. Immunohistochemistry with anti–caveolin 1 demonstrated no change in vascular development.

CONCLUSIONS: A distinct saccular hypoplasia in DHCR24−/− mice suggests that there is an important role of DHCR24 in lung development. Additional experiments with surfactant compositions are needed to explore the underlying respiratory pathology.

USING Q-METHODOLOGY TO EXPLORE PREFERENCES FOR CARE OF ADOLESCENTS WITH CHRONIC DISORDERS: 4 PROFILES

Submitted by AnneLoes Van Staa
AnneLoes Van Staaa,b, Susan Jedelooc,c, Jos Latoura, Job van Exelb
aExpertise Center Transitions in Care, Rotterdam University, Rotterdam, Netherlands; bInstitute of Health Policy and Management and cAgia Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam, Netherlands

INTRODUCTION: Adolescents with chronic disorders are seldom asked to give opinions about their preferences for care, even though they are frequent health care users and soon need to take over the responsibility of managing their own care.

OBJECTIVE: The aim of the study was to investigate care-related preferences of adolescents with chronic disorders.

METHODS: A Q-methodologic study was conducted in a random sample of 31 adolescents with various congenital and acquired disorders from the total population of Erasmus Medical Center-Agia Sophia Children’s Hospital (12–19 years). Adolescents rank-ordered 37 state-ments about preferences for care and self-care using a quasi-normal distribution. Factor analysis was applied to identify clusters in the Q-sorts, groups of adolescents with common preferences.

RESULTS: Four profiles were distinguished: concerned and compliant, backseat patient, opinionated and careless, and worried and insecure. Differences between profiles are related to independence competencies, level of involvement in management of the illness, adherence to therapeutic regimens, and appreciation of their parents’ role. All adolescents want to have an important say in treatment-related decisions. Although adolescents are used to being accompanied by their parents in the con-
TRIAL AMONG URBAN IRANIAN SCHOOLCHILDREN

GASTROINTESTINAL INFECTIONS: A DOUBLE-BLIND, RANDOMIZED IMPACT OF ZINC SUPPLEMENTATION ON RESPIRATORY AND SERVICES

Nahid Masoodpoor, Shokoofeh Darakhshani, Darakhshani Seyed Taghi Tabatabaei and Seyed Abualghasem Mosavat

Pediatrics 2008;121;S153
DOI: 10.1542/peds.2007-2022

Updated Information & Services including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/121/Supplement_2/S153.3

Subspecialty Collections This article, along with others on similar topics, appears in the following collection(s):
Gastroenterology
http://classic.pediatrics.aappublications.org/cgi/collection/gastroenterology_sub
International Child Health
http://classic.pediatrics.aappublications.org/cgi/collection/international_child_health_sub
Nutrition
http://classic.pediatrics.aappublications.org/cgi/collection/nutrition_sub
Pulmonology
http://classic.pediatrics.aappublications.org/cgi/collection/pulmonology_sub

Permissions & Licensing Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
https://shop.aap.org/licensing-permissions/

Reprints Information about ordering reprints can be found online:
http://classic.pediatrics.aappublications.org/content/reprints

Pediatrics is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since . Pediatrics is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2008 by the American Academy of Pediatrics. All rights reserved. Print ISSN: .
IMPACT OF ZINC SUPPLEMENTATION ON RESPIRATORY AND GASTROINTESTINAL INFECTIONS: A DOUBLE-BLIND, RANDOMIZED TRIAL AMONG URBAN IRANIAN SCHOOLCHILDREN
Nahid Masoodpoor, Shokoofeh Darakhshan, Darakhshan Darakhshan, Seyed Taghi Tabatabaei and Seyed Abualghasem Mosavat
Pediatrics 2008;121;S153
DOI: 10.1542/peds.2007-2022QQQQQQ

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/121/Supplement_2/S153.3