sample was taken and analyzed by flow cytometry. eNO was measured by using an NO analyzer. Univariate linear regression analysis was used to determine correlations between continuous variables and eNO concentrations.

RESULTS. eNO levels were significantly elevated in patients with moderate-to-severe asthma compared with those in healthy subjects (18.53 ± 2.00 vs 5.90 ± 0.90 ppb). With treatment, eNO levels in patients with moderate-to-severe asthma decreased to levels near those of the healthy subjects by 4 weeks. Interferon γ expression was decreased in patients with moderate-to-severe asthma. An elevated eNO level was also associated with decreased interleukin 4 and interleukin 13 cytokine expression in CD8 lymphocytes.

CONCLUSIONS. eNO levels were elevated in patients with moderate-to-severe asthma. With 4 weeks of treatment, eNO levels in patients with moderate-to-severe asthma were no different from those in the control subjects. There was decreased interferon γ expression by the CD4- and CD8-positive peripheral blood lymphocytes of patients with moderate-to-severe asthma. Elevated eNO levels were associated with suppression of both T-helper 1 and 2 cytokine expression by the peripheral blood lymphocyte, suggesting a systemic immunomodulatory effect.

REVIEWER COMMENTS. This study adds to the growing information on the utility of eNO levels to monitor asthma-treatment response. It demonstrates how eNO can be used to measure the reduction in airway inflammation as a response to treatment primarily in patients with moderate-to-severe asthma. At this point, it is not clear what the implications are of the association between elevated eNO levels and cytokine suppression.

The Impact of Spirometry on Pediatric Asthma Diagnosis and Treatment

PURPOSE OF THE STUDY. To evaluate the use of spirometry as a diagnostic tool in a pediatric asthma-management program at an inner-city community health clinic.

STUDY POPULATION. The study profiled 56 pediatric patients who presented with respiratory symptoms that were indicative of an acute asthma exacerbation.

METHODS. Clinicians recorded each patient’s history of asthma symptoms as well as heart rate, respiratory rate, and pulse oximetry. Patients then were assessed for current asthma symptoms and given an initial assessment of asthma, upper respiratory infection, or both. An initial treatment plan for nonreactive airway management, al-
The Impact of Spirometry on Pediatric Asthma Diagnosis and Treatment

Hanna Talwar and Harvey L. Leo

Pediatrics 2007;120;S135

DOI: 10.1542/peds.2007-0846GGG

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: /content/120/Supplement_3/S135.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s):</td>
</tr>
<tr>
<td></td>
<td>Allergy/Immunology /cgi/collection/allergy:immunology_sub</td>
</tr>
<tr>
<td></td>
<td>Asthma /cgi/collection/asthma_sub</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: /site/misc/Permissions.xhtml</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: /site/misc/reprints.xhtml</td>
</tr>
</tbody>
</table>
The Impact of Spirometry on Pediatric Asthma Diagnosis and Treatment
Hanna Talwar and Harvey L. Leo
Pediatrics 2007;120;S135
DOI: 10.1542/peds.2007-0846GGG

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/120/Supplement_3/S135.2