CONCLUSIONS. The authors concluded that there is an association between exposure to high levels of indoor NO₂ and respiratory symptoms in children with physician-diagnosed asthma. This association, however, was limited to children who lived in multifamily homes, probably because of the smaller size (and air volume) of the apartments. The authors also suggested a strong association of NO₂ exposure with housing characteristics, lower socioeconomic status, and ethnicity.

REVIEWER COMMENTS. This study demonstrated an association between increased NO₂ levels and asthma symptoms of children in multifamily homes. The important potential confounders in the analysis should have been adequately dealt with in the logistic regression analysis used. The biological basis of the association is poorly understood, and the value of intervention to reduce exposure is speculative. Additional studies will be needed to clarify and confirm the association.

URL: www.pediatrics.org/cgi/doi/10.1542/peds.2007-0846T

Mary Dell Railey, MD
Susan S. Laubach, MD
Larry W. Williams, MD
Durham, NC

Particulate Levels Are Associated With Early Asthma Worsening in Children With Persistent Disease
Rabinovitch N, Strand M, Gelfand EW. Am J Respir Crit Care Med. 2006;173:1098–1105

PURPOSE OF THE STUDY. To determine if exposure to particulate matter has immediate effects on asthma control in children with persistent disease.

STUDY POPULATION. Seventy-three schoolchildren (aged 6–13 years) with physician-diagnosed asthma in Denver, Colorado, were studied.

METHODS. Over 2 consecutive winters, the subjects were followed daily. The association among ambient fine-particulate levels, bronchodilator use, and urinary leukotriene E₄ levels was assessed.

RESULTS. Fine-particulate concentrations peaked in the morning hours during hours when children were commuting to school. Children with severe asthma had a stronger association (+8.1%) than those with mild-to-moderate disease (+1.6%), with increased bronchodilator usage at school on days with an increase of 1 interquartile range in morning maximum fine-particulate levels. Morning maximum fine-particulate levels were also associated with urinary leukotriene E₄ measured during school hours (average increase of 6.2% per interquartile-range increase).

CONCLUSIONS. Peak concentrations of ambient fine particulate are associated with early increases in bronchodilator use and urinary leukotriene E₄ levels among children with persistent asthma, despite the use of controller medications.

REVIEWER COMMENTS. Managing patients with asthma requires knowing possible triggers. This study examined the timing of particulate associations with disease control in children with moderate or severe asthma who were taking controller medications. The interval between exposure and initiation of health effects was seen to occur within the first few minutes or hours after exposure. The effects were strongest in children with more severe asthma. This effect plus the increase in urinary leukotriene E₄ levels suggest that in children with persistent asthma, particulate exposure may lead to early release of mediators related to asthma worsening.

URL: www.pediatrics.org/cgi/doi/10.1542/peds.2007-0846U

Bradley E. Chipps, MD
Sacramento, CA

Carbon in Airway Macrophages and Lung Function in Children

PURPOSE OF THE STUDY. To define the extent of pulmonary-function abnormalities that may be attributed to exposures to particulate matter with a median aerodynamic diameter of <10 μm (PM₁₀) as a result of fossil fuel combustion.

STUDY POPULATION. The study included 114 children (aged 8 to 15 years) without any chronic respiratory condition who were living in the same residence for 1 year. All children had a forced expiratory volume in 1 second (FEV₁) of >80% predicted.

METHODS. Pulmonary-function testing and induced sputum were obtained on the same day. PM₁₀ values from all sources were collected for 1 year. The results were controlled for passive tobacco-smoke exposure.

RESULTS. A total of 62 (56%) of the 114 subjects were able to produce sputum. An increase of 1 μg/m³ in PM₁₀ was associated with an increase of 0.10 μm² in the carbon content of airway macrophages. Each 1.0 μm² increase in carbon content was associated with a significant decrease in pulmonary function (decrease of 17% in FEV₁, 12.9% in forced vital capacity, and 34.7% in forced expiratory flow, midexpiratory phase).

CONCLUSIONS. A significant reduction in pulmonary function resulted from increased exposure to products of fossil fuel combustion.

Bradley E. Chipps, MD
Sacramento, CA
Particulate Levels Are Associated With Early Asthma Worsening in Children With Persistent Disease
Todd A. Mahr

*Pediatrics* 2007;120;S114
DOI: 10.1542/peds.2007-0846V

Updated Information & Services
including high resolution figures, can be found at:
/content/120/Supplement_3/S114.2

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Allergy/Immunology
/cgi/collection/allergy:immunology_sub
Asthma
/cgi/collection/asthma_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2007 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.
Particulate Levels Are Associated With Early Asthma Worsening in Children With Persistent Disease
Todd A. Mahr
Pediatrics 2007;120;S114
DOI: 10.1542/peds.2007-0846V

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/120/Supplement_3/S114.2