CONCLUSIONS. The authors concluded that there is an association between exposure to high levels of indoor NO₂ and respiratory symptoms in children with physician-diagnosed asthma. This association, however, was limited to children who lived in multifamily homes, probably because of the smaller size (and air volume) of the apartments. The authors also suggested a strong association of NO₂ exposure with housing characteristics, lower socioeconomic status, and ethnicity.

REVIEWER COMMENTS. This study demonstrated an association between increased NO₂ levels and asthma symptoms of children in multifamily homes. The important potential confounders in the analysis should have been adequately dealt with in the logistic regression analysis used. The biological basis of the association is poorly understood, and the value of intervention to reduce exposure is speculative. Additional studies will be needed to clarify and confirm the association.

REVIEWER COMMENTS. The reduction in pulmonary function in this cohort of children who did not have current lower airway symptoms is in the same order of magnitude as patients with moderate persistent asthma, which underscores the need for less toxic energy sources.

Particulate Levels Are Associated With Early Asthma Worsening in Children With Persistent Disease
Rabinovitch N, Strand M, Gelfand EW. Am J Respir Crit Care Med. 2006;173:1098–1105

PURPOSE OF THE STUDY. To determine if exposure to particulate matter has immediate effects on asthma control in children with persistent disease.

STUDY POPULATION. Seventy-three schoolchildren (aged 6–13 years) with physician-diagnosed asthma in Denver, Colorado, were studied.

METHODS. Over 2 consecutive winters, the subjects were followed daily. The association among ambient fine-particulate levels, bronchodilator use, and urinary leukotriene E₄ levels was assessed.

RESULTS. Fine-particulate concentrations peaked in the morning hours during hours when children were commuting to school. Children with severe asthma had a stronger association (+8.1%) than those with mild-to-moderate disease (+1.6%), with increased bronchodilator usage at school on days with an increase of 1 interquartile range in morning maximum fine-particulate levels. Morning maximum fine-particulate levels were also associated with urinary leukotriene E₄ measured during school hours (average increase of 6.2% per interquartile-range increase).

CONCLUSIONS. Peak concentrations of ambient fine particulate are associated with early increases in bronchodilator use and urinary leukotriene E₄ levels among children with persistent asthma, despite the use of controller medications.

REVIEWER COMMENTS. Managing patients with asthma requires knowing possible triggers. This study examined the timing of particulate associations with disease control in children with moderate or severe asthma who were taking controller medications. The interval between exposure and initiation of health effects was seen to occur within the first few minutes or hours after exposure. The effects were strongest in children with more severe asthma. This effect plus the increase in urinary leukotriene E₄ levels suggest that in children with persistent asthma, particulate exposure may lead to early release of mediators related to asthma worsening.
Carbon in Airway Macrophages and Lung Function in Children
Bradley E. Chipps
Pediatrics 2007;120;S114
DOI: 10.1542/peds.2007-0846U

Updated Information & Services
including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/120/Supplement_3/S114

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Allergy/Immunology
http://classic.pediatrics.aappublications.org/cgi/collection/allergy:immunology_sub
Asthma
http://classic.pediatrics.aappublications.org/cgi/collection/asthma_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
https://shop.aap.org/licensing-permissions/

Reprints
Information about ordering reprints can be found online:
http://classic.pediatrics.aappublications.org/content/reprints
Carbon in Airway Macrophages and Lung Function in Children
Bradley E. Chipps
*Pediatrics* 2007;120;S114
DOI: 10.1542/peds.2007-0846U

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/120/Supplement_3/S114.1