months to years after initial infection, it is clear that immune compromise occurs very early in the disease process. Of great importance is the failure of long-term (≥5 years) highly active retroviral therapy to reverse this site-specific T-cell depletion. Additionally, other studies have demonstrated that HIV is consistently detectable in the intestine of HIV-infected patients, even those with no detectable plasma virus. Current therapies are inadequate for clearing the virus from the intestine, a major reservoir of HIV. New therapies aimed at the mucosal immune system will be required to address this issue. Finally, because the intestine is the earliest target for virus infection and T-cell loss, enhancing mucosal immunity will be critical for any vaccine strategy to be effective.

PREVENTION OF VAGINAL SHIV TRANSMISSION IN RHEUS MACAQUES THROUGH INHIBITION OF CCR5

Purpose of the Study. Topical agents that prevent transmission of HIV across mucosa during sexual activity are urgently needed, because the vast majority of HIV infections are acquired through transmission across mucosal surfaces. However, the mechanisms of HIV entry at vaginal sites of infection are poorly understood. The chemokine receptor CCR5 serves as an essential coreceptor for HIV entry into target cells. Individuals who lack surface CCR5 expression are highly resistant to acquiring HIV infection through the mucosal route. Because viruses that use CCR5 predominate in the early stages of mucosal transmission, it is likely that such transmission selectively involves CCR5. This suggests a strategy by which vaginal transmission might be prevented.

Methods. The chemokine RANTES is a specific ligand for CCR5. The investigators generated an analog of RANTES, PSC-RANTES, that has an N-terminal modification. In vitro PSC-RANTES inhibited propagation of SHIV, a chimeric simian/human immunodeficiency virus. Thirty adult female rhesus macaques were pretreated with varying concentrations of PSC-RANTES intravaginally. The animals were subsequently challenged with high-multiplicity (300 median tissue culture infectious doses) SHIV intravaginally and monitored for up to 24 weeks.

Results. All 5 animals treated with the highest dose of PSC-RANTES were protected from HIV infection. Lower doses also proved protective to a lesser extent. Plasma levels of PSC-RANTES were not detectable, suggesting specific local protection against viral infection.

Conclusions. PSC-RANTES, a selective blocker of CCR5, protected rhesus macaques from inter vaginal exposure to a highly infectious dose of SHIV, although the topical concentration of PSC-RANTES that was shown to be protective was many times higher than the concentration required to neutralize the same virus in vitro.

Reviewer’s Comments. A safe, simple, and affordable topical microbicide that would effectively prevent vaginal transmission of HIV is desperately needed, particularly in the developing world. This study provides proof of the concept that targeting the coreceptor for HIV entry into target cells, CCR5, is a viable strategy for the prevention of vaginal transmission of HIV. Cost, however, would be a major obstacle to the implementation of this strategy, but it is now clear that HIV can be stopped before it infects the vaginal mucosa.

Infectious Disease

A SYNTHETIC CONJUGATE POLYSACCHARIDE VACCINE AGAINST HAEMOPHILUS INFLUENZAE TYPE B

Purpose of the Study. To demonstrate the safety and immunogenicity of synthetic glycoconjugate vaccine against *Haemophilus influenzae* type b (Hib).

Study Population. Adults, children, and infants in Camaguey, Cuba.

Methods. The authors established a large-scale good manufacturing protocol for the production of ~100-g batches of poliyribosylribitol phosphate (PRP), the Hib capsular polysaccharide. Synthetic PRP (sPRP) conjugated to protein was shown to be capable of binding antibody from the serum of children immunized with commercial Hib conjugate vaccine. sPRP conjugated to tetanus toxoid (sPRP-TT) from 3 different lots was used for immunization experiments in animals and phase I and II clinical trials in humans. The vaccination dose given was 10 μg of sPRP (sPRP/TT ratio 1:2.6 by weight) via intramuscular injection. All clinical trials were double blind and randomized. Single-dose phase I trials of adults (n = 40) and unimmunized children (4–5 y; n = 133) were followed by single-dose phase II trials of 1041 children. PRP-specific IgG and bactericidal activity were measured from subject sera samples 4 weeks after immunization. A total of 139 infants were then enrolled in a multiple-dose phase I trial and received vaccine at 2, 4, and 6 months. Infants (1141) then were enrolled in a double-blind phase II trial and randomized to receive either sPRP-TT, sPRP-TT with aluminum phosphate, or commercial conjugate vaccine (Vaxem-Hib) at 2, 4, 6, and 18 months. PRP-specific IgG was measured by enzyme-linked immunosorbent assay at 7, 18, and 19 months.

Results. No adverse reactions were reported. From single-dose studies, average PRP-specific IgG levels and percent of patients achieving seroconversion were comparable when sPRP-TT was given with or without aluminum phosphate, and both were comparable to commercial Hib vaccine. Three different lots of sPRP-TT vaccine were tested, with no significant differences between them. In multiple-dose trials of infants, 99.7% reached levels of PRP-specific IgG that are considered to be protective (>1 μg/mL), and geometric mean concentrations of PRP-specific IgG were similar to those in infants immunized with commercial vaccine.

Conclusion. The synthetic vaccine was as safe and immunogenic as licensed commercial vaccines that incorporate native polysaccharide.

Reviewer’s Comments. This is the first report of the large-scale production and clinical testing of a synthetic polysaccharide vaccine. The production of conjugate vaccine from a large-scale culture of microorganisms is expensive, time consuming, and variable. The present work is likely to portend developments in other vaccines that are directed against polysaccharide capsular material (eg, *Streptococcus pneumoniae*, meningococcal group C). Clinical efficacy remains to be established. Some of the published data suggest lower responses in the youngest infants, which would be of concern.

Joseph A. Church, MD Los Angeles, CA

Joseph A. Shreffler, MD, PhD New York, NY
Inhibition of CCR5 Prevention of Vaginal SHIV Transmission in Rhesus Macaques Through

Joseph A. Church

Pediatrics 2005;116;573
DOI: 10.1542/peds.2005-0698

Updated Information & Services
including high resolution figures, can be found at:
/content/116/Supplement_2/573.2.full.html

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
HIV/AIDS
/cgi/collection/hiv:aids_sub
International Child Health
/cgi/collection/international_child_health_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2005 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.
Prevention of Vaginal SHIV Transmission in Rhesus Macaques Through Inhibition of CCR5
Joseph A. Church
Pediatrics 2005;116;573
DOI: 10.1542/peds.2005-0698CC

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/116/Supplement_2/573.2.full.html