Symptomatic Treatment of Migraine in Children: A Systematic Review of Medication Trials

Léonie Damen, PhD*; Jacques K. J. Bruijn, MD‡§; Arianne P. Verhagen, PhD*; Marjolein Y. Berger, MD PhD*; Jan Passchier, PhD∥; and Bart W Koes, PhD*

ABSTRACT. Objective. Treatment of pediatric migraine includes an individually tailored regimen of both nonpharmacologic and pharmacologic measures. The mainstay of symptomatic treatment in children with migraine is intermittent oral or suppository analgesics, but there is no coherent body of evidence on symptomatic treatment of childhood migraine available. The objective of this review is to describe and assess the evidence from randomized and clinical controlled trials concerning the efficacy and tolerability of symptomatic treatment of migraine in children.

Design. Systematic review according to the standards of the Cochrane Collaboration.

Methods. Databases were searched from inception to June 2004. Additional reference checking was performed. Two authors independently selected randomized and controlled trials evaluating the effects of symptomatic treatment in children (<18 years old) with migraine, using headache (HA) clinical improvement as an outcome measure. Two authors assessed trial quality independently by using the Delphi list, and data were extracted from the original reports by using standardized forms. Quantitative and qualitative analysis was conducted according to type of intervention.

Results. A total of 10 trials were included in this review, of which 6 studies were considered to be of high quality. The number of included participants in each trial ranged from 14 to 653, with a total of 1575 patients included in this review. Mean dropout rate was 19.8% (range: 0–39.1%), and the mean age of participants was 2.2 years (range: 4–18 years).

All studies used HA diaries to assess outcomes. In most studies, a measure of clinical improvement was calculated by using these diaries. Improvement often was regarded as being clinically relevant when the patients’ HA declined by ≥50%.

Regarding oral analgesic treatment, the effectiveness of acetaminophen, ibuprofen, and nimesulide were evaluated. When compared with placebo, acetaminophen (relative risk [RR]: 1.5; 95% confidence interval [CI]: 1.0–2.1) and ibuprofen (pooled RR: 1.5; 95% CI: 1.2–1.9) significantly reduced HA. We conclude that there is moderate evidence that both acetaminophen and ibuprofen are more effective in reduction of symptoms 1 and 2 hours after intake than placebo with minor adverse effects. No clear differences in effect were found between acetaminophen and ibuprofen or nimesulide.

Regarding the nonanalgesic interventions, nasal-spray sumatriptan, oral sumatriptan, oral rizatriptan, oral dihydroergotamine, intravenous prochlorperazine, and ketorolac were evaluated. When compared with placebo, nasal-spray sumatriptan (pooled RR: 1.4; 95% CI: 1.2–1.7) seemed to significantly reduce HAs. We conclude that there is moderate evidence that nasal-spray sumatriptan is more effective in reduction of symptoms than placebo but with significantly more adverse events. No differences in effect were found between oral triptans and placebo. All medications were well tolerated, but significantly more adverse events were reported for nasal-spray sumatriptan compared with placebo.

We also conclude that there is moderate evidence that intravenous prochlorperazine is more effective than intravenous ketorolac in the reduction of symptoms 1 hour after intake. No differences in effect were found between oral dihydroergotamine and placebo.

Conclusions. Acetaminophen, ibuprofen, and nasal-spray sumatriptan are all effective symptomatic pharmacologic treatments for episodes of migraine in children. The new frontier for symptomatic treatment is likely to be the development of triptan agents for use in children. Most treatments have only been evaluated in 1 or 2 studies, which limits the generalizability of the findings. We strongly recommend performing a large, high-quality randomized, controlled trial evaluating different symptomatic medications compared with each other or to placebo treatment. Favorable high-quality studies should be performed and reported according to the CONSORT statement. Clinical improvement of HA should be used as the primary outcome measure, but quality of life, days missed at school, and satisfaction of child or parents should also be used as an outcome measure in future studies. Pediatrics 2005;116:e295–e302. URL: www.pediatrics.org/cgi/doi/10.1542/peds.2004-2742; migraine, children, symptomatic treatment, systematic review, clinical trials, medication.

ABBREVIATIONS. RCT, randomized, controlled trial; CCT, clinical controlled trial; HA, headache; IHS, International Headache Society; RR, relative risk; CI, confidence interval; IV, intravenous.
and pharmacologic measures. Nonpharmacologic modalities include lifestyle adjustments (ie, sleep hygiene, dietary adjustment, or exercise program), reassurance, stress management, biofeedback, and other biobehavioral therapies. Pharmacologic interventions include the use of symptomatic medication such as analgesics (acetaminophen, ibuprofen), triptans (sumatriptan), and antimetics (prochlorperazine) and the use of prophylactic medication. The mainstay of symptomatic treatment in children with migraine is intermittent oral or suppository analgesics, but there is no coherent body of evidence on symptomatic treatment of childhood migraine available.

Good-quality controlled trials preferably summarized in a systematic review form the basis for evidence-based treatment guidelines, which may improve the management and treatment of individual patients. One systematic review on triptans only for pediatric migraine has been performed. Based on 4 randomized, controlled trials (RCTs), they found effectiveness with nasal-spray sumatriptan compared with placebo in acute pediatric migraine, whereas oral sumatriptan and rizatriptan were not clearly beneficial. To study adverse events, open-label studies were also included.

The objective of this review was to describe and assess the evidence from RCTs and clinical controlled trials (CCTs) concerning the efficacy and tolerability of symptomatic treatment of migraine in children.

METHODS

Search Strategy

We searched Medline, Embase, PsychInfo, Web of Science, and Cinahl from inception to June 2004 using the terms “migraine,” “headache,” “cephalgia,” “cephalalgia,” “child*,” “infant,” “teenage,” “adolescent,” or “(p)ediatric” together with the search strategy for identifying clinical trials described by Robinson and Dickinson. The Cochrane Controlled Trials Register was searched using the words “migraine,” “headache,” “cephalgia,” “cephalalgia,” “child*,” “infant,” “teenage,” “adolescent,” or “(p)ediatric.” Additional strategies for identifying trials included searching the reference lists of review articles and included studies.

Study Selection

We selected only RCTs and CCTs including symptomatic pharmacologic medicine used in the management of migraine in children (<18 years old), with criteria designed to distinguish migraine from other types of headache (HA). The use of a specific set of diagnostic criteria (eg, International Headache Society [IHS]) and Ad Hoc Committee on the Classification of Headache) was not required, but migraine diagnoses had to be based on at least some of the distinctive features of migraine. Our outcome measures of interest were: HA intensity, frequency or duration, HA specification of eligibility criteria, (5) blinding of outcome assessors, (6) blinding of care provider, (7) blinding of patient, (8) presentation of point estimates and measures of variability and (9) intention-to-treat analysis. One extra item was added because it was found to be relevant for these studies: (10) withdrawal/ dropout rate (>20% or selective dropout) unlikely to cause bias. The methodologic criteria were scored as yes (1), no (0), or don’t know (0).

A quality score of each trial was computed by counting the number of positive scores. Any disagreements were resolved through consensus, when possible, or by arbitration of a third author (J.K.J.B. or A.P.V.).

Data extraction was performed by 1 author (L.D.) and checked by a second author (A.P.V.). Disagreements were resolved by consensus. Extracted information included (if available) demographic data, detailed description of the intervention and control (ie, dose given, study duration), outcome measures, and information on adverse effects.

Data Analysis

We calculated relative risks (RRs) with 95% confidence intervals (CIs). We performed an available-case analysis (data reported), and if sufficient data were available, we also performed a worst-case analysis (ie, all dropouts are assumed to be nonresponders). Data are presented as treatment success, indicating that a RR > 1 represents a better outcome for the first mentioned intervention group.

In case of a crossover trial, we ideally would like to restrict our analysis to first-period data only or, in case of a sufficient washout period and no carryover effect, data of both periods could be combined. In this review we analyzed the crossover trials as if they were parallel-group trials, because none of them provided separate data of each treatment period or data concerning a carryover effect, which would otherwise lead to exclusion of most crossover trials.

Statistical pooling was performed in the case of clinical homogeneity. In parallel studies, when >1 comparison from the same study (ie, sumatriptan 5, 10, and 20 mg versus placebo) was used for the statistical pooling of sumatriptan versus placebo, the results from the placebo group were evenly spread out over the 3 comparisons, and the number of patients in the placebo group was divided by 3 to prevent triple counting (R.J.P.M. Scholten, PhD, Dutch Cochrane Centre, verbal communication, 2004).

A qualitative analysis was performed by using a rating system with levels of evidence. The evidence was judged to be strong when multiple (>2) high-quality RCTs produced generally consistent findings. Results were considered consistent if ≥75% of the studies reported similar results on the same outcome measure. It was judged to be moderate when 1 high-quality RCT or multiple (>2) low-quality RCTs or CCTs produced generally consistent findings. Evidence was considered to be limited when only 1 low-quality RCT or CCT existed and conflicting if the findings of existing trials were inconsistent. No evidence was considered when no RCTs or CCTs were found or when the authors provide no sufficient data for analysis. We arbitrarily regarded trials with methodologic quality scores of ≥6 as of high quality.

RESULTS

Search Results

The results of our search strategy are presented in Fig 1. In total, 9 RCTs and 1 CCT are included in this review.

Description of Studies

Full details of the included studies are presented in Table 1.
Participants

The number of included participants in each trial ranged from 14 to 653 (mean 158 ± 201 patients), with a total of 1575 patients included in this review. The mean percentage of participants who dropped out from the trials was 19.8% (range: 0–39.1%). Mean age of participants was 11.7 ± 2.2 years (range: 4–18 years). Overall, the percentage of boys was generally the same as girls (mean: 55%; range: 42–82%). Nine of 10 trials used the criteria of the IHS to classify migraine, and 1 trial used the criteria of Prensky and Sommer. Six studies used a crossover design.

Interventions

The pharmacologic interventions used for symptomatic treatment could be divided into analgesic treatment and nonanalgesic treatment. Regarding oral analgesic treatment, the effectiveness of acetaminophen, ibuprofen, and nimesulide was evaluated. Regarding the nonanalgesic interventions, nasal-spray sumatriptan, oral sumatriptan, oral rizatriptan, oral dihydroergotamine, intravenous (IV) prochlorperazine, and IV ketorolac were evaluated. Eight studies included a placebo comparison.

Outcome Measures

All studies used HA diaries to assess outcomes. Using this diary, among others, the frequency, intensity, and duration of HAs were scored on a Likert scale. In most studies a measure of clinical improvement was calculated. Improvement often was regarded as being clinically relevant when the patients’ HAs decline by ≥50%. This score is presented as “HA clinical improvement” in Table 1 and is our primary outcome measure. Other outcome measures were HA index, frequency, intensity or duration, rescue medication, and adverse events posttreatment and at follow-up.

Methodologic Quality

Quality scores (with positive items in parentheses) are presented in the “study quality” section of Table 1. The median score for methodologic quality was 6 (range: 3–9). Using a cutoff point of 6 of 10 criteria, 6 studies (60.0%) were considered to be of high quality. Most prevalent methodologic shortcomings were a concealed randomization method (unclear: 80%), the intention-to-treat analysis (unclear: 50%; negative: 20%), and comparability of groups at baseline (unclear: 70%; negative: 10%).

Effectiveness of Symptomatic Treatment

Table 2 gives an overview of effect estimates of the different treatment modalities described below.

Oral Analgesic Treatment

Acetaminophen Versus Placebo

One high-quality study compared 15 mg/kg acetaminophen with placebo. HA improvement was significantly higher for acetaminophen, although the use of rescue medication as well as the number of adverse events were not significantly different between the 2 groups. Adverse events mentioned for acetaminophen versus placebo were nausea (2.4% vs 3.7%) and vomiting (2.4% vs 7.4%).

Ibuprofen Versus Placebo

Two studies compared 10 mg/kg ibuprofen with placebo, including 1 high-quality study and 1 low-quality study.
<table>
<thead>
<tr>
<th>Study</th>
<th>Migraine Criteria Set</th>
<th>Participants</th>
<th>Interventions</th>
<th>Outcome Measures</th>
<th>Results*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahonen et al<sup>16</sup>; RCT-crossover; QS: 6 (items 1 and 4–8)</td>
<td>IHS</td>
<td>45.7% female; mean age: 12.4 y (SD: 2.4 y); n = 129; 42 dropouts; time since onset of HAs: 3.8 y (range: 0.5–13.5 y)</td>
<td>I: sumatriptan nasal spray (10 mg with 20–39 kg [N = 31] and 20 mg with ≥40 kg body weight [N = 63] for 1 attack); N = 129; 39 dropouts</td>
<td>HA diary (5-point Likert scale)</td>
<td>HA clinical improvement: 1 h I vs C RR: 1.86 (1.27, 2.72); 2 h I vs C RR: 1.76 (1.29, 2.39)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C: placebo nasal spray (1 attack); N = 129; 42 dropouts</td>
<td>HA improvement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MT: before and 15, 30, and 60 min thereafter, continuing hourly for up to 7 h unless child fell asleep or symptoms resolved</td>
<td>Rescue medication</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rescue medication: nonsteroidal anti-inflammatory drugs or acetaminophen 2 h after intake of study drug</td>
<td>Adverse events</td>
<td>Adverse events: I vs C RR: 0.64 (0.44, 0.92)</td>
</tr>
<tr>
<td>Brousseau et al<sup>10</sup>; RCT-parallel group; QS: 9 (items 1–8 and 10)</td>
<td>Prensky and Sommer</td>
<td>58.1% female; mean age: 13.7 y (range: 7.3–18 y); n = 62; no dropouts; time since onset of HAs: not stated</td>
<td>I: IV prochlorperazine (0.15 mg/kg [max: 10 mg] + 10 mL/kg bolus of normal saline solution for 1 attack); N = 33</td>
<td>HA diary (Faces pain scale)</td>
<td>HA clinical improvement: 60 min; I vs C RR: 1.54 (1.07, 2.20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C: IV ketorolac (0.5 mg/kg [max: 30 mg] + 10 mL/kg bolus of normal saline solution for 1 attack); N = 29</td>
<td>HA improvement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MT: before and 30 and 60 min thereafter</td>
<td>Adverse events</td>
<td>Adverse events: I vs C RR: 0.88 (0.06, 13.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rescue medication: usual treatment within 2 h or >2 h after intake of study drug</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I: sumatriptan tablet (50 mg per 0.75–1.5 m<sup>2</sup> body surface area [6–12 y] or 100 mg for ≥1.5 m<sup>2</sup> body surface area [≥12 y] for 1 attack); N = 31; 8 dropouts</td>
<td>HA diary (5-point Likert scale or visual analogue scale), resulting in pain intensity difference and summed pain intensity</td>
<td>HA clinical improvement: 2 h I vs C RR: 0.93 (0.70, 1.24); I vs C2 RR: 1.46 (1.02, 2.10); C1 vs C2 RR: 1.57 (1.10, 2.24); Rescue medication: <2 h I vs C1 RR: 0.98 (0.33, 2.89); I vs C2 RR: 0.73 (0.27, 2.01); C1 vs C2 RR: 0.75 (0.27, 2.06); ≥2 h I vs C1 RR: 3.41 (0.73, 15.9); I vs C2 RR: 0.68 (0.27, 1.70); C1 vs C2 RR: 0.20 (0.05, 0.88)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C1: ibuprofen (10 mg/kg for 1 attack); N = 106; 28 dropouts</td>
<td>HA improvement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2: placebo medication (cellulose for 1 attack); N = 106; 28 dropouts</td>
<td>Adverse events: I vs C RR: 0.49 (0.15, 1.56); I vs C2 RR: 0.43 (0.14, 1.35); C1 vs C2 RR: 0.89 (0.36, 2.19)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MT: before and 30 and 60 min thereafter, continuing hourly for up to 5 h unless child fell asleep or symptoms resolved</td>
<td>Rescue medication</td>
<td>Adverse events: I vs C RR: 0.49 (0.15, 1.56); I vs C2 RR: 0.43 (0.14, 1.35); C1 vs C2 RR: 0.89 (0.36, 2.19)</td>
</tr>
<tr>
<td>Hiimala¨inen et al<sup>18</sup>; RCT-crossover; QS: 6 (items 1 and 4–8)</td>
<td>IHS</td>
<td>52.2% female; median age: 12.3 y (range: 8.3–16.4 y); n = 31; 8 dropouts; median time since onset of HAs: 3.4 y (range: 1.0–8.8 y)</td>
<td>C: placebo medication. 1 attack, N = 31, 8 dropouts</td>
<td>HA diary (5-point Likert scale or visual analogue scale), resulting in pain intensity difference and summed pain intensity</td>
<td>HA clinical improvement: 2 h I vs C RR: 1.40 (0.52, 3.77)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MT: before and 30 and 60 min thereafter, continuing hourly for up to 5 h unless child fell asleep or symptoms resolved</td>
<td>HA improvement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rescue medication: usual treatment after intake of study drug</td>
<td>Rescue medication: 1–2 h I vs C RR: 2.00 (0.81, 4.94)</td>
<td></td>
</tr>
<tr>
<td>Hiimala¨inen et al<sup>18</sup>; RCT-crossover; QS: 7 (items 1 and 4–8)</td>
<td>IHS</td>
<td>38.5% female; mean age: 10.2 y (SD: 3.2 y); n = 16; 4 dropouts; median time since onset of HAs: 3.4 y</td>
<td>I: dihydroergotamine (20 μg/kg [or 40 μg/kg] by no response) for 1 attack); N = 16; 4 dropouts</td>
<td>HA diary (5-point Likert scale)</td>
<td>HA clinical improvement: 2 h I vs C RR: 3.79 (0.97, 14.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C: placebo medication (1 attack); N = 16; 3 dropouts</td>
<td>HA improvement</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Migraine Criteria Set</td>
<td>Participants</td>
<td>Interventions</td>
<td>Outcome Measures</td>
<td>Results*</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Lewis et al14; RCT-parallel group; QS: 4 (items 1, 5, 7, and 8)</td>
<td>IHS</td>
<td>44% (I) and 38.5% (C) female; mean age: 9.1 y (range: 6–12 y); n = 138; 54 dropouts; time since onset of HAs: not stated</td>
<td>MT: before and 30 and 60 min thereafter, continuing hourly for up to 5 h unless child fell asleep or symptoms resolved. Rescue medication: usual treatment after intake of study drug</td>
<td>Rescue medication</td>
<td>Rescue medication: 1–2 h I vs C RR: 1.08 (0.41, 2.83) Adverse events I vs C RR: 2.17 (0.22, 20.94) HA clinical improvement: 2 h I vs C RR: 1.40 (1.00, 1.96)</td>
</tr>
<tr>
<td>Soriani et al15; CCT-crossover; QS: 3 (items 4, 8, and 10)</td>
<td>IHS</td>
<td>50% female; mean age: 12.8 y (SD: 3.1 y); n = 66; 6 dropouts; time since onset of HAs: not stated</td>
<td>I: acetaminophen (15 mg/kg for 10 attacks); C: nimesulide (2.5 mg/kg for 10 attacks); MT: before and 90 min thereafter unless child fell asleep or symptoms resolved. Rescue medication: usual treatment after intake of study drug</td>
<td>HA improvement</td>
<td>HA improvement: 1.5 h I vs C RR: 0.97 (0.89, 1.06) Adverse events I vs C RR: 1.25 (0.35, 4.43)</td>
</tr>
<tr>
<td>Ueberall and Wenzel17; RCT-crossover; QS: 5 (items 1, 4, and 8–10)</td>
<td>IHS</td>
<td>50% female; mean age: 8.1 (I) and 8.3 (C) y (range: 6.4–9.8 y); n = 14; no dropouts; median time since onset of HAs: 1.1 y (range: 0.8–2 y)</td>
<td>I: sumatriptan nasal spray (20 mg per dose for 1 attack); C: placebo nasal spray (0.9% sodium chloride for 1 attack); MT: before and 90 min thereafter unless child fell asleep or symptoms resolved</td>
<td>HA diary (4-point Likert scale)</td>
<td>HA clinical improvement: 2 h I vs C RR: 2.00 (1.05, 3.80)</td>
</tr>
<tr>
<td>Winner et al13; RCT-parallel group; QS: 8 (items 1–8)</td>
<td>IHS</td>
<td>51.5% female; mean age: 14.1 y (SD: 1.6 y); n = 653; 143 dropouts; time since onset of HAs: not stated</td>
<td>I: sumatriptan nasal spray (5 mg per dose for 1 attack); C1: sumatriptan nasal spray (10 mg per dose for 1 attack); C2: placebo nasal spray (1 attack); MT: before and 15, 30, 60, and 120 min thereafter</td>
<td>HA diary (4-point Likert scale)</td>
<td>HA clinical improvement: 2 h I vs C1 RR: 1.03 (0.87, 1.24); I vs C2 RR: 1.05 (0.87, 1.26); C1 vs C3 RR: 1.26 (1.02, 1.54); C1 vs C2 RR: 1.01 (0.84, 1.22); C1 vs C3 RR: 1.21 (0.99, 1.49); C2 vs C3 RR: 1.20 (0.97, 1.49)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2: sumatriptan nasal spray (20 mg per dose for 1 attack); N = 118</td>
<td>Rescue medication</td>
<td>Rescue medication: I vs C1 RR: 0.97 (0.61, 1.54); I vs C2 RR: 0.80 (0.51, 1.26); I vs C3 RR: 0.64 (0.42, 0.97); C1 vs C2 RR: 0.83 (0.53, 1.20); C1 vs C3 RR: 0.66 (0.44, 1.00); C2 vs C3 RR: 0.80 (0.54, 1.18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C3: placebo nasal spray (1 attack); N = 131</td>
<td>Adverse events</td>
<td>Adverse events I vs C1 RR: 0.92 (0.67, 1.26); I vs C2 RR: 0.88 (0.64, 1.22); I vs C3 RR: 1.96 (1.26, 3.03); C1 vs C2 RR: 0.96 (0.71, 1.31); C1 vs C3 RR: 2.13 (1.39, 3.28); C2 vs C3 RR: 2.22 (1.44, 3.41)</td>
</tr>
</tbody>
</table>
quality study. In the pooled analysis, HA improvement was significantly higher for ibuprofen, and the use of rescue medication was significantly higher for placebo. No difference in the number of adverse events was found (vomiting: 4.9% vs 7.4%; nausea: 3.7% for both; gastric pain: 1.2% [ibuprofen only]).

Acetaminophen Versus Ibuprofen

One high-quality study compared 15 mg/kg acetaminophen with 10 mg/kg ibuprofen and found no significant differences for any outcome measures.

Acetaminophen Versus Nimesulide

One low-quality study compared 15 mg/kg acetaminophen with 2.5 mg/kg nimesulide and found no significant differences. Adverse events (mild abdominal discomfort and nausea) accompanied 9% of the treatments with acetaminophen and 6% of treatments with nimesulide.

We conclude that there is moderate evidence that both acetaminophen and ibuprofen are more effective in reduction of symptoms 1 and 2 hours after intake than placebo, with minor adverse effects. No clear differences in effect were found between acetaminophen and ibuprofen or nimesulide.

Triptans

Sumatriptan Versus Placebo

Four studies compared sumatriptan and placebo, including 3 high-quality studies and 1 low-quality study.

Three studies evaluated intranasal sumatriptan. Ahonen et al did not present outcomes for the doses separately. At 1 and 2 hours after administration we found significant differences concerning HA improvement in favor of sumatriptan. The use of rescue medication was significantly more for placebo, whereas the number of adverse events was significantly more for sumatriptan. Adverse events mentioned for sumatriptan versus placebo included bad taste (25.7% vs 3.1%), nausea (7.9% vs 8.3%), vomiting (3.9% vs 4.4%), triptan sensation (temperature [warmth], burning/stinging sensations, or paresthesia) (2.4% vs 1.6%), feeling of light-headedness (2.2%, sumatriptan only), and stiffness in the jaw (1.1%, sumatriptan only).

One high-quality study evaluated oral sumatriptan and found no significant differences for any outcome measures. Adverse events mentioned for sumatriptan versus placebo included dry mouth (4.7% vs 3.4%), dizziness (4.7% vs 4.8%), asthenia (3.4% vs 2.0%), nausea (2.7% vs 8.2%), and somnolence (2.7% vs 8.2%).

We conclude that there is moderate evidence that nasal-spray sumatriptan is more effective in the reduction of symptoms than placebo, but with signifi-
cantly more adverse events. No differences in effect were found between oral triptans and placebo.

Other Medications

Dihydroergotamine Versus Placebo

One high-quality study compared oral dihydroergotamine with placebo.\(^{20}\) We found no significant differences for clinical improvement of HA, rescue medication, or the number of adverse events, probably because of statistically low power (smallest treatment group: <25 patients). The 1 adverse event mentioned for dihydroergotamine versus placebo was vomiting (16.7% vs 7.7%).

Prochlorperazine Versus Ketorolac

One high-quality study compared IV prochlorperazine with IV ketorolac.\(^{10}\) After 1 hour, prochlorperazine worked significantly better compared with ketorolac. The number of adverse events was not significantly different between the 2 groups.

We conclude that there is moderate evidence that IV prochlorperazine is more effective than IV ketorolac in the reduction of symptoms 1 hour after intake. No differences in effect were found between oral dihydroergotamine and placebo.

Worst-Case Analysis

When sufficient data were available, a worst-case analysis was conducted in which all dropouts were assumed to be nonresponders. Only 4 studies provided sufficient data to allow a worst-case analysis, but the overall conclusions did not change.\(^{12,16,18,20}\)

DISCUSSION

The most effective therapies for migraine are those that can be given quickly at the beginning of an attack and have a rapid onset of action. Based on the available literature, we conclude that over-the-counter analgesics such as acetaminophen and ibuprofen are relatively safe and effective. Most RR estimates were at ~1.5, which means that there is 50% more chance (risk) to recover when using, for example, ibuprofen instead of placebo. No clear differences in effect were found between the different analgesics. After finishing our study, another systematic review on treatments of pediatric migraine was published with similar conclusions.\(^{21}\) This review included just 5 controlled trials on pharmacologic treatment, and no statistical pooling resulting in an overall effect estimate was performed.

The new frontier for symptomatic treatment is likely to be the development of triptan agents for use in children. We found moderate evidence that nasal-spray sumatriptan is more effective than placebo, but no differences in effect were found between oral sumatriptan and rizatriptan compared with placebo. It is possible that oral triptans may not be effective in children during acute migraine attacks because of nausea and vomiting. In adults, sumatriptan pharmacokinetic data have been collected after oral administration in patients suffering from migraine: the absorption from an oral tablet was delayed during a migraine attack because of gastric stasis, nausea, and vomiting.\(^{22}\) It is likely that this also takes place in children.

Also, migraine attacks in children tend to be shorter than those in adults and may spontaneously remit within 2 hours. Medications, which would be anticipated to provide maximum benefit close to 2 hours after administration, may not show efficacy for shorter-duration attacks, and results may be comparable to those when using placebos.

Nasal administration offers an advantage over the tablet administration, because it provides faster absorption immediately after dosing, which results in faster initial relief of migraine symptoms. The only disadvantage of the use of nasal-spray sumatriptan compared with the other investigated medications is the adverse events. Although all reported adverse events were minor for all reported medications, the use of nasal-spray sumatriptan resulted in significantly more adverse events than the use of placebo.

Although systematic reviews offer the least biased method of summarizing research literature, our results must be interpreted with consideration of the quality of evidence from which they were obtained. None of the crossover trials provided separate data of each treatment period or data concerning the existence of a carryover effect. Positive results of analgesics and triptans in children and adolescents have frequently emerged from open-label studies, which might be biased.

Most treatments have been evaluated in only 1 or

TABLE 2. Overview: Results of Symptomatic Treatment

<table>
<thead>
<tr>
<th>Comparisons</th>
<th>Total Trials, n</th>
<th>HA Clinical Improvement 2 h After Intake, RR (95% CI)</th>
<th>Rescue Medication 2 h After Intake, RR (95% CI)</th>
<th>Number of Adverse Events, RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analgesic treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetaminophen vs placebo</td>
<td>1 H</td>
<td>1.5 (1.0, 2.1)*</td>
<td>0.7 (0.3, 1.7)</td>
<td>0.4 (0.1, 1.4)</td>
</tr>
<tr>
<td>Ibuprofen vs placebo</td>
<td>1 H, 1 L</td>
<td>1.5 (1.2, 1.9)*</td>
<td>0.1 (0.0, 0.4)*</td>
<td>0.9 (0.4, 2.2)</td>
</tr>
<tr>
<td>Acetaminophen vs ibuprofen</td>
<td>1 H</td>
<td>0.9 (0.7, 1.2)</td>
<td>3.4 (0.7, 15.9)</td>
<td>0.5 (0.2, 1.6)</td>
</tr>
<tr>
<td>Acetaminophen vs nimesulide</td>
<td>1 L</td>
<td>1.0 (0.9, 1.1)</td>
<td>—</td>
<td>1.3 (0.4, 4.4)</td>
</tr>
<tr>
<td>Triptans treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sumatriptan nasal spray vs placebo</td>
<td>2 H, 1 L</td>
<td>1.4 (1.2, 1.7)*</td>
<td>0.7 (0.5, 0.8)*</td>
<td>2.5 (1.7, 3.7)*</td>
</tr>
<tr>
<td>Sumatriptan tablets vs placebo</td>
<td>1 H</td>
<td>1.4 (0.5, 3.8)</td>
<td>2.0 (0.8, 4.9)</td>
<td>2.7 (0.8, 8.8)</td>
</tr>
<tr>
<td>Rizatriptan vs placebo</td>
<td>1 L</td>
<td>1.2 (1.0, 1.4)</td>
<td>0.8 (0.6, 1.1)</td>
<td>1.0 (0.7, 1.5)</td>
</tr>
<tr>
<td>Other treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dihydroergotamine vs placebo</td>
<td>1 H</td>
<td>3.8 (1.0, 14.8)</td>
<td>1.1 (0.4, 2.8)</td>
<td>2.2 (0.2, 20.9)</td>
</tr>
<tr>
<td>Prochlorperazine (IV) vs ketorolac (IV)</td>
<td>1 H</td>
<td>1.5 (1.1, 2.2)*</td>
<td>—</td>
<td>0.9 (0.1, 13.4)</td>
</tr>
</tbody>
</table>

H indicates high-quality trial; L, low-quality trial; n, number of trials, which can have >1 comparison; —, no data available.

* Significant difference.
2 studies, which limits the generalizability of the findings. There are no clinical trials that tested the efficacy of different triptans with each other. Studies comparing the efficacy of triptans to analgesics drugs with known efficacy are also needed.

Clinical improvement of HA and adverse events are 2 outcome measures frequently used in the included trials for symptomatic treatment of migraine attacks. Although most studies described the adverse events as mild and safe, the simple description of the kind and number of adverse events often gives insufficient insight into the severity and appreciation of the adverse events for a child. Outcome measures such as quality of life, satisfaction of child or parents, and days missed at school are not used.

We strongly recommend performing a large high-quality RCT that evaluates different symptomatic medications compared with each other or to placebo treatment. Favorable high-quality studies should be performed and reported according to the CONSORT statement (see www.consort-statement.org). Clinical improvement of HA should be used as the primary outcome measure, but quality of life, days missed at school, and satisfaction of child or parents should also be used as outcome measures in future studies.

CONCLUSIONS

There is moderate evidence that analgesics (acetaminophen and ibuprofen) and nasal-spray sumatriptan are more effective than placebo treatment. Based on the available literature, no differences in effect were found between the different analgesics.

ACKNOWLEDGMENT

We thank the Netherlands Organization for Health Research and Development for funding this research.

REFERENCES

7. Ad Hoc Committee on the Classification of Headache of the National Institute of Neurological Diseases and Blindness. Classification of headache. JAMA. 1962;179:717–718
Symptomatic Treatment of Migraine in Children: A Systematic Review of Medication Trials
Léonie Damen, Jacques K.J. Bruijn, Arianne P. Verhagen, Marjolein Y. Berger, Jan Passchier and Bart W Koes
Pediatrics 2005;116:e295
DOI: 10.1542/peds.2004-2742

Updated Information & Services
including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/116/2/e295

References
This article cites 22 articles, 7 of which you can access for free at:
http://pediatrics.aappublications.org/content/116/2/e295.full#ref-list-1

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
https://shop.aap.org/licensing-permissions/

Reprints
Information about ordering reprints can be found online:
http://classic.pediatrics.aappublications.org/content/reprints
Symptomatic Treatment of Migraine in Children: A Systematic Review of Medication Trials
Léonie Damen, Jacques K.J. Bruijn, Arianne P. Verhagen, Marjolein Y. Berger, Jan Passchier and Bart W Koes
DOI: 10.1542/peds.2004-2742

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/116/2/e295