Obesity at the Onset of Diabetes in an Ethnically Diverse Population of Children: What Does It Mean for Epidemiologists and Clinicians?

Rebecca B. Lipton, PhD, MPH, RN*‡; Melinda Drum, PhD‡; Deborah Burnet, MD, MSc*; Barry Rich, MD*; Andrew Cooper, BA*; Elizabeth Baumann, MD*; and William Hagopian, MD, PhD§

ABSTRACT. Objective. It is often difficult to determine the pathophysiology of childhood diabetes at onset, particularly in overweight children, because obesity has been associated with both type 1 and type 2 diabetes. We compared children at the diagnosis of diabetes in a multiethnic population-based registry to understand the epidemiology of the disease during a time of rapidly changing diagnostic and treatment norms.

Methods. Incident diabetes was ascertained in Chicagoans who were aged 0 to 17 years from 1985 to 2001. We classified as type 2 those with polycystic ovary syndrome, acanthosis, or a physician’s note indicating type 2 or those who reported subsequent use of oral agents (n = 203); 73% of them were also obese. Patients with obesity at onset but no other indicator of possible type 2 (n = 197) were classified as having obesity-related/undetermined type. The remaining 842 cases were classified as type 1. Logistic regression analyses were conducted.

Results. Fully 32% of cases were classified as non–type 1, including 37% of non-Hispanic blacks, 30% of Latinos, and 14% of non-Hispanic whites. The proportion of obesity-undetermined and type 2 increased over the 17 years. Comparing the 3 patient groups, type 2 cases were more often female, non-Hispanic black, and older and had a first-degree diabetic relative, whereas Latino boys were overrepresented among the obese/undetermined.

ABBREVIATIONS. OR, odds ratio; CI, confidence interval.

Over the past decade, major changes have taken place in the diagnostic norms for childhood diabetes. Concurrently, the prevalence of childhood overweight, a hypothesized risk factor for type 1 and especially for type 2 diabetes, has increased dramatically across the developed world. Investigators in the United States and elsewhere have observed a marked increase in the diagnosis of type 2 diabetes in youth during the past few years, disproportionately affecting minority young people (Native Americans, Latinos and non-Hispanic blacks).1,2 However, many children who develop type 2 diabetes are severely ill at onset and indistinguishable on clinical grounds from those with classic type 1 diabetes.3 Our group used available criteria to tentatively distinguish patients with youth-onset type 2 diabetes in a population-based registry; clinical studies conducted on average 8 years after diagnosis showed that a substantial fraction of those who were classified with type 2 displayed features of type 1 diabetes, ie, absent β-cell function, autoantibodies, and/or type 1 diabetes–related HLA-DQ alleles.4 In addition, reports from Europe5–7 have linked early childhood obesity with type 1 diabetes, suggesting that youth-onset diabetes may often result from an interplay of autoimmunity and type 2 risk factors. Specifically, overnutrition may play a role in stimulating or prolonging autoimmune insulinitis.5,8 The body of knowledge on these relationships in non-European-origin children is extremely limited, despite the fact that these ethnic groups carry an increased risk for type 2 diabetes. It is essential to understand the role of obesity at the onset of diabetes in young people for both clinical and research purposes.

The Chicago Childhood Diabetes Registry includes patients of African and Latino descent, as well as non-Hispanic whites. First, we sought to detect any clear differences at diagnosis between those who were classified as having type 1 and type 2 diabetes, excluding those who were obese alone. Second, we evaluated those who were obese at the time of diagnosis, without other indications of type 2 diabetes, to determine which of the other 2 diagnostic groups they most closely resembled. Because diagnostic norms for childhood diabetes have changed greatly since the first incident cases were ascertained in 1985, an important question is whether there are discernible temporal differences in the frequency of type 1,
METHODS
This report presents sociodemographic characteristics and clinical information from medical records at the time of diagnosis, as well as self-reported traits from interviews, in non-Hispanic black and Latino diabetic children who were aged 0 to 17 at disease onset and whose diabetes was diagnosed between 1985 and 2001; non-Hispanic white children were included from 1992.

The Chicago Childhood Diabetes Registry is a city-wide registry of patients who have diabetes and were 0 to 17 years of age at initial diagnosis; the primary source of ascertainment is hospital records, augmented by outpatient sources as described previously in detail. Briefly, eligible cases are identified by review of medical records at 37 of the 40 area hospitals that have a pediatrics ward and at least 200 total inpatient beds; patients are included if they were diagnosed from January 1, 1985, and were a resident of the city and at least 200 total inpatient beds. Patients are included if medical records at 37 of the 40 area hospitals that have a pediatrics ward and at least 200 total inpatient beds; patients are included if they were diagnosed from January 1, 1985, and were a resident of the city and at least 200 total inpatient beds.

Sources of medical care were classified as tertiary care institutions when they had a specialized pediatric endocrinology clinic and were directly associated with 1 of the local medical schools (Children’s Memorial Hospital, Christ Hospital, Cook County Hospital, Evanston Hospital, Loyola University Medical Center, Michael Reese Hospital, Rush-Presbyterian-St. Luke’s Medical Center, University of Chicago Children’s Hospital-LaRabida, or University of Illinois Hospital). All other hospitals and clinics were considered to be community facilities. The purpose of examining this variable was to discern whether there were differences in physicians’ diagnostic practices by where they practiced. Furthermore, an earlier analysis by our group showed significantly lower risk for being rehospitalized after the initial diagnosis for young patients whose diabetes was diagnosed at tertiary care institutions, compared with those whose diabetes was diagnosed in community settings. Rehospitalization after initial diagnosis is generally considered to indicate inadequate routine diabetes management.

Data Collection and Statistical Methods
Incidence data were abstracted from medical records by research assistants onto paper forms or, more recently, handheld electronic devices (Palm IIIx). Trained interviewers conducted telephone interviews using a standardized protocol. Univariate associations between diabetes categories and patient characteristics were tested using chi² and t tests using an unadjusted alpha of 0.05 as the significance level; then multiple logistic regression analysis was conducted. Separate multivariable logistic models were fit for type 1 versus type 2, type 1 versus obese, and type 2 versus obese, because we expected different predictors in each model. Variables with p < 0.20 in univariate models were entered as potential covariates in multivariable models, with variable selection based on the likelihood ratio criterion. Gender was included in all models, and all models were adjusted for year of onset and tertiary versus community hospital diagnosis. χ² tests for trend were used to identify secular changes in classification patterns. Patients

Fig 1. Criteria for classifying youths as having type 1, obese/undetermined type, or type 2 diabetes.
RESULTS

Overall, the majority of cases, 68%, were classified as having type 1 diabetes (Table 1). Of those who were classified as non–type 1, the patients who were obese without other type 2 characteristics made up 16% of non-Hispanic black, 18% of Latino, and 8% of non-Hispanic white cases, whereas 21% of non-Hispanic black, 11% of Latino, and 5% of non-Hispanic white cases were type 2 (P < .001). Of the 203 patients who were classified as having type 2 diabetes, 149 (73%) were also obese.

For comparability, time trends were evaluated for non-Hispanic blacks and Latinos only, ie, those with the full 17 years of data, 1985–2001 (Fig 2). The distribution of categories changed over time (Fig 2A), with fewer children receiving a diagnosis of type 1 and more with type 2 diabetes in recent years (P < .001). The proportion of obese/undetermined patients also increased over time (P = .022) but at a slower rate than type 2. The proportion of all children who had diabetes and were obese at the time of diagnosis, including those identified as type 2 (Fig 2B), increased dramatically over the study years (P < .001). Finally, the absolute number of cases increased over time, from an average of 52 cases per year in the first 5 years of the study, 1985–1989, to an average of 64 per year in 1995–1999, again considering only non-Hispanic blacks and Latinos (Fig 2A).

Comparing Type 1 and Type 2 Diabetes: Univariate Associations

There were more non-Hispanic blacks and girls in the type 2 group (Table 2), and their diabetes was diagnosed, on average, more recently than those with type 1. The average age at diagnosis was ~4 years younger (9.7; SD: 4.6) for type 1 patients, compared with those with type 2, whose average age was 13.6 years (SD: 2.9) at diagnosis.

The medical records of approximately one fourth of the type 1 patients and more than half of those with type 2 diabetes indicated a first-degree relative with diabetes. The type 2 patients were more likely to have asthma (15.3% vs 10.5% in type 1 patients), hypertension (8.4% vs 1.4%), hyperlipidemia (3.0% vs 0.8%), or a learning disability (5.4% vs 2.5%), listed as a comorbidity on the medical record, but no more likely to have a psychiatric diagnosis or sickle cell trait. More of those with type 2 diabetes used Medicaid or had no health insurance at all, but they were no less likely to have received a diagnosis at a tertiary care hospital (Table 2).

The severity of onset was greater among the type 1 patients, although substantial morbidity was found in the type 2 patients as well, on the basis of their signs and symptoms as recorded in the hospital charts (Table 2). Forty percent of type 2 and 62.4% of type 1 patients had a diagnosis of diabetic ketoacidosis; the mean initial pH values were correspondingly higher and the mean glucose values were lower among the type 2 patients than among those with type 1. The type 1 patients were more likely to have had weight loss and polyuria and marginally more likely to have had polydipsia documented on the onset record but no more likely than the type 2 patients to have had polyphagia.

Comparing Obese/Undetermined Type Diabetes With Type 1 and Type 2: Univariate Associations

We found that the obese/undetermined patients were intermediate between the type 1 and type 2 patients in many of their demographic features and onset signs and symptoms (Table 3). Fully one third of the obese/undetermined group were of Latino ethnicity (Fig 3, Table 3). The prevalence of a first-degree relative with diabetes was statistically similar for the obesity-related and the type 2 groups (47% and 55%, respectively). The obese/undetermined group resembled those with type 1 diabetes with respect to their mean initial pH values, whereas their mean initial glucose values were not statistically different from the type 2 patients. On the medical records, documented weight loss, polyuria, polydipsia, and polyphagia were not statistically different when comparing the obese/undetermined cases with the other 2 groups. In general, severe onset signs and symptoms were present in the majority of patients, irrespective of category. Significantly fewer obese/undetermined type children received a diagnosis at a tertiary care hospital, compared with both the type 1 (P = .017) and type 2 (P = .024) patient groups (Table 3). This suggests differences in diagnostic practices between community-based physicians and those who are affiliated with academic centers.

Multivariate Models I: Comparing Type 1 and Type 2

Multiple logistic regression models were constructed, with the type 1 patients serving as the ref-
ference category and the obese/undetermined group excluded. Significant demographic predictors of type 2 phenotype were female gender (65% increased odds), age at onset (28% increased odds per year), and having a first-degree relative with diabetes noted on the medical records (odds ratio [OR]: 2.6; Table 4). Both non-Hispanic whites and Latinos were less likely to be in the type 2 group than were non-Hispanic blacks (OR: 0.17 and 0.47, respectively). When clinical findings and symptoms were added to the model, the demographic variables were retained, although female gender was only marginally significant ($P = .077$). In addition, the presence of hypertension was associated with type 2 diabetes. The presence of diabetic ketoacidosis, 2 or more of 3 classic symptoms (weight loss, polyuria, and polydipsia), and a higher initial glucose value were associated with having type 1 diabetes (Table 4). Both models were adjusted for the year of diagnosis and the type of hospital where the patient was first seen (community or tertiary care facility). The odds of type 2 increased significantly from one year to the next, by 15% (95% confidence interval [CI]: 11% to 20%) in the demographics-only model and by 7% per year (95% CI: 1% to 13%) in the full model. Patients who received a diagnosis in a tertiary care facility were more likely to have type 2 than type 1 (OR: 1.7; 95% CI: 1.1 to 2.7 in the demographics-only model; OR: 2.0; 95% CI: 1.1 to 3.5 in the full model). The Hosmer-Lemeshow test demonstrated acceptable goodness of fit for the models.

Multivariate Models II: Comparing Type 1 and Type 2 With Obese/Undetermined Type Diabetes

We constructed separate multivariate models comparing the type 1 and type 2 patients with the obese/undetermined group as the reference category, again controlling for the year of diagnosis and the type of hospital where the patient was first seen.
health care facility where the patient first received a diagnosis. These models also fit the data reasonably well when tested.

Comparing the type 1 patients with the obese/undetermined group, younger age at onset and non-Hispanic white ethnicity were significantly predictive of type 1 (Table 5), whereas having a first-degree relative with diabetes and the presence of hypertension were more likely in the obese/undetermined group. The odds for type 1 compared with obese/undetermined type decreased significantly from one year to the next, by 8% (95% CI: 4% to 11%); there was no difference in having received a diagnosis in a tertiary care versus community hospital (OR: 1.1; 95% CI: 0.8 to 1.6).

When compared with the obese/undetermined

TABLE 2.	Demographic and Clinical Features of Types 1 and 2 Diabetes in Youth 0 to 17 Years Old		
	Type 1	Type 2	P Value
N (male/female)	842 (423/419)	203 (82/121)	.012
Age at diagnosis, y, mean (SD)	9.7 (4.6)	13.6 (2.9)	<.001
Ethnicity, n (%)	Non-Hispanic black 485 (54.4)	155 (76.4)	<.001
	Latino 250 (29.7)	40 (19.7)	
	Non-Hispanic white 13 (15.9)	8 (3.9)	
Year of onset, mean (SD)	1993.6 (4.8)	1995.7 (4.3)	<.001
Parent and/or sibling with diabetes, %	25.1	55.0	<.001

Chronic conditions recorded on the medical record, %

Asthma	10.5	15.3	.052
Hypertension	1.4	8.4	<.001
Hyperlipidemia	0.8	3.0	.014
Sickle cell trait	2.3	1.0	.247
Learning disability	2.5	5.4	.030
Any psychiatric diagnosis	3.7	4.9	.412
Medicaid or no health insurance	47.7	56.7	.031

Diagnosed at tertiary care hospital |

| 72.1 | 74.0 | .597 |

Onset of signs and symptoms*

Diabetic ketoacidosis, %	62.4	40.1	<.001
Weight loss, %	71.9	56.0	<.001
Polyuria, %	92.9	88.3	.046
Polydipsia, %	91.1	86.5	.070
Polypagia, %	28.2	30.7	.542
Glucose, mmol/L, mean (SD)	32.5 (16.1)	26.7 (17.8)	<.001
Arterial pH, mean (SD)	7.27 (0.12)	7.31 (0.11)	<.001

* Obese/undetermined type was excluded (n = 197).

TABLE 3.	Obese/Undetermined Type Diabetes Compared with Type 1 and 2 Diabetes in Youth			
	Type 1	Obese	Type 2	P Value
N (male/female)	842 (423/419)	197 (90/107)	203 (82/121)	.250 .285
Age at diagnosis, y, mean (SD)	9.7 (4.6)	12.5 (3.5)	13.6 (2.9)	<.001 .002
Ethnicity, n (%)	Non-Hispanic black 458 (54.4)	119 (60.4)	155 (76.4)	.003 .003
	Latino 250 (26.7)	65 (33.0)	40 (19.7)	
	Non-Hispanic white 13 (15.9)	13 (6.6)	8 (3.9)	
Year of onset, mean (SD)	1993.6 (4.8)	1994.6 (4.7)	1995.7 (4.3)	.009 .014
Parent and/or sibling with diabetes, %	25.1	47.0	55.0	<.001 .121

Chronic conditions recorded on the medical record, %

Asthma	10.5	13.7	15.3	.190 .657
Hypertension	1.4	7.1	8.4	<.001 .635
Hyperlipidemia	0.8	1.0	3.0	.802 .166
Sickle cell trait	2.3	2.0	1.0	.846 .390
Learning disability	2.5	1.5	5.4	.414 .034
Any psychiatric diagnosis	3.7	8.1	4.9	.007 .195
Medicaid or no health insurance, %	47.7	54.4	56.7	.114 .675
Diagnosed at tertiary care hospital, %	72.1	63.4	74.0	.017 .024

Onset of signs and symptoms*

Diabetic ketoacidosis, %	62.4	52.9	40.1	.031 .025
Weight loss, %	71.9	65.0	56.0	.103 .117
Polyuria, %	92.9	91.7	88.3	.570 .303
Polydipsia, %	91.1	89.8	86.5	.604 .342
Polypagia, %	28.2	28.4	30.7	.957 .665
Glucose, mmol/L, mean (SD)	32.5 (16.1)	29.2 (16.6)	26.7 (17.8)	.021 .181
Arterial pH, mean (SD)	7.27 (0.12)	7.27 (0.12)	7.31 (0.11)	.99 .003

* Obese/undetermined type excluded (n = 197).
patients, the type 2 patients were older at onset, less likely to be of Latino ethnicity, and less likely to have had diabetic ketoacidosis (Table 5). The odds for type 2 compared with obese/undetermined type did not change significantly over time (annual change: 3%; 95% CI: −3% to 9%). The type 2 patients were significantly more likely to have received a diagnosis in a tertiary care versus community hospital (OR: 1.9; 95% CI: 1.1 to 3.3).

DISCUSSION

We present data on a large group of patients ascertained from the entire community so that they represent those who were seen at tertiary care facilities and those who were treated by community-based primary care physicians. These young people received diagnoses over a 17-year period of marked change both in the prevalence of overweight among children\(^1\),\(^2\) and in clinical diagnostic and treatment norms. Specifically, there was an increase in the recognition that type 2 diabetes can occur among young people: physicians were much more likely to have considered a diagnosis of type 2 diabetes in children after the mid-1990s, when the first reports of this phenomenon appeared in the literature.\(^{1,15,16}\) This report includes the largest number of minority children in any US study and the largest number of African-origin children in the world. It also covers a longer period of time than most population-based studies. The value of this study is, first, that it includes enough cases to allow subgroup analysis and also that the clinical features associated with type 2 and obese/undetermined type diabetes in previous small clinical series\(^3\) were examined in a large, unselected cohort representing children of diverse ethnic backgrounds. Other US studies of type 2 diabetes in youths are clinic series rather than population-based and therefore subject to even more bias from selective referrals, time trends in diagnostic practice, etc.

The population at risk, Chicagoans aged 0 to 17 years, has remained relatively constant over the

TABLE 4. Multivariate Predictors of Type 2 Versus Type 1 Diabetes in Youths

<table>
<thead>
<tr>
<th>Variable</th>
<th>Contrast</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic variables only (N = 961)*</td>
<td>Face male gender</td>
<td>1.65</td>
<td>1.13 to 2.42</td>
</tr>
<tr>
<td>Female gender vs male gender</td>
<td>Age at onset Per year</td>
<td>1.28</td>
<td>1.21 to 1.35</td>
</tr>
<tr>
<td>Latino ethnicity vs non-Hispanic white ethnicity</td>
<td>Non-Hispanic white ethnicity vs non-Hispanic black</td>
<td>0.17</td>
<td>0.08 to 0.40</td>
</tr>
<tr>
<td>Parent and/or sibling with diabetes</td>
<td>Non-Hispanic white ethnicity vs non-Hispanic black</td>
<td>0.17</td>
<td>0.08 to 0.40</td>
</tr>
<tr>
<td>Demographic variables plus signs and symptoms</td>
<td>Parent and/or sibling with diabetes vs neither</td>
<td>2.82</td>
<td>1.93 to 4.12</td>
</tr>
<tr>
<td>Hypertension Present vs absent</td>
<td>Diabetic ketoacidosis Present vs absent</td>
<td>6.46</td>
<td>2.04 to 20.5</td>
</tr>
<tr>
<td>Weight loss, polyuria, polydipsia At least 2 vs none or 1</td>
<td>Initial glucose value Per 10 mmol/L</td>
<td>0.39</td>
<td>0.17 to 0.90</td>
</tr>
<tr>
<td>* Obese group was excluded. The data were adjusted for year of diagnosis and type of hospital (community versus tertiary care facility). Additional candidate variables were asthma, hyperlipidemia, learning disability, and arterial pH.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Therefore, the decline in type 1 diagnosis incidence is slowly rising across the known to protect from autoimmunity, and type 1 abrupt onset of severe symptoms. Obesity is not “atypical,” “unusual”) but with 1 or more factors signed as type 2 because of clinician doubts (eg, etiology is uncertain, such as patients who were as-

There are several limitations to the current study. First, patients who were not hospitalized or those who were not treated with insulin (before 1992) would have been missed; although virtually all pe-

Our study includes patient groups whose diabetes etiology is uncertain, such as patients who were as-

study years. Nonetheless, the absolute number of non-Hispanic black and Latino children who have received a diagnosis of diabetes has increased over time (Fig 2A), as has the proportion of children who are overweight or obese at the onset of the disease. In Chicago, the increase in the proportion of youths who have received a diagnosis of type 2 diabetes directly mirrors a decline in the proportion of those with type 1 (Fig 2A). The proportion in the obese/undetermined category increased as well over time but more gradually. This suggests that not all of the change is attributable to heightened awareness of type 2 diabetes in youths: at least some young people may have a distinct phenotype combining features of both autoimmunity and insulin resistance. Our find-

TABLE 5. Multivariate Predictors of Type 1 and 2 Versus Obese/Undetermined Type Diabetes in Youths

<table>
<thead>
<tr>
<th>Variable</th>
<th>Contrast</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1 vs obesity-related diabetes (N = 954)*</td>
<td>vs male gender</td>
<td>0.78</td>
<td>0.55 to 1.11</td>
</tr>
<tr>
<td>Age at onset</td>
<td>Per year</td>
<td>0.86</td>
<td>0.82 to 0.90</td>
</tr>
<tr>
<td>Latino ethnicity</td>
<td>vs non-Hispanic black</td>
<td>0.96</td>
<td>0.65 to 1.42</td>
</tr>
<tr>
<td>Non-Hispanic white ethnicity</td>
<td>vs non-Hispanic black</td>
<td>2.53</td>
<td>1.27 to 5.03</td>
</tr>
<tr>
<td>Parent and/or sibling with diabetes</td>
<td>vs neither</td>
<td>0.46</td>
<td>0.32 to 0.66</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Present vs absent</td>
<td>0.21</td>
<td>0.08 to 0.54</td>
</tr>
<tr>
<td>Type 2 vs obesity-related diabetes (N = 300)†</td>
<td>vs male gender</td>
<td>1.38</td>
<td>0.85 to 2.25</td>
</tr>
<tr>
<td>Age at onset</td>
<td>Per year</td>
<td>1.09</td>
<td>1.01 to 1.18</td>
</tr>
<tr>
<td>Latino ethnicity</td>
<td>vs non-Hispanic black</td>
<td>0.51</td>
<td>0.29 to 0.90</td>
</tr>
<tr>
<td>Non-Hispanic white ethnicity</td>
<td>vs non-Hispanic black</td>
<td>0.41</td>
<td>0.13 to 1.28</td>
</tr>
<tr>
<td>Diabetic ketoacidosis</td>
<td>Present vs absent</td>
<td>0.57</td>
<td>0.35 to 0.91</td>
</tr>
</tbody>
</table>

* Type 2 group was excluded. The data were adjusted for year of diagnosis and community versus tertiary care facility. Additional candidate variables were gender, asthma, any psychiatric diagnosis, initial glucose value, diabetic ketoacidosis, and weight loss. † Type 1 was group excluded. The data were adjusted for year of diagnosis, community versus tertiary care facility. Additional candidate variables were gender, first-degree relative with diabetes, hyperlipidemia, learning disability, any psychiatric diagnosis, weight loss, initial glucose value, and arterial PH.

autoantibodies, genetic markers, and measures of endogenous insulin production.

We used the data available from medical records in a population-based epidemiologic study, supple-

The registry study did not include non-Hispanic white and children of other ethnic backgrounds until 1992. Ascertainment for the most recent years, since 2000, is incomplete. Another difficulty is that limited and inconsistent data were available, a result of us-

There are several limitations to the current study. For this reason, we considered it important to control for both year of diagnosis and the type of hospital setting in which the diagnosis was made. Because the assignment to diagnostic category was based in part on subsequent treatment as reported by patients, those who were not interviewed are less likely to be included in the type 2 group. Additional biases are possible, because the analysis was restricted to those with onset records, who were somewhat younger at diagnosis and, on average, received a diagnosis 1 year earlier in time, thus rendering them less likely to
have had type 2 diabetes. It is reassuring to note that
temporal trends in diagnosis that were similar to
these were observed among patients who attended
the 3 university-based diabetes centers in Florida.22
Finally, although this is the largest study of its kind
in the United States, diabetes in youths is a relatively
infrequent outcome, so the actual numbers of cases is
small. Thus, the possibility of type II error remains,
particularly for the subgroup analyses.

The role of obesity in the etiology of childhood
diabetes is still unclear. For epidemiologists, this
indicates the need to collect as much onset data as
possible, in a consistent manner, to phenotype cases
correctly. Furthermore, clinicians must recognize
that a substantial fraction of young patients may
have features of both type 1 and type 2 diabetes at
onset and that the optimal treatment for these indi-
viduals will change over time. We have initiated
clinical studies to characterize more definitively the
range of youth-onset diabetes in Chicago, measuring
autoantibodies, genetic markers, and endogenous in-
sulin production; we anticipate that the current re-
port will stimulate descriptive epidemiologic and
clinical studies of childhood diabetes elsewhere.
Diabetes in youth creates a substantial social burden
on both the family and the community, which is likely
worsened in underserved populations. Increased un-
derstanding of the etiology and epidemiology of di-
babetes in youth can lead to improved quality of care.

ACKNOWLEDGMENTS

This work was supported by National Institutes of Health
Grants R29DK44752, R01DK44752, and M01RR13987 and
would not have been possible without the patients and families who
participate in the Chicago Childhood Diabetes Registry. The ef-
forts of the Chicago Childhood Diabetes Study Group are grate-
fully acknowledged.

Participants in the Chicago Childhood Diabetes Study Group were:
- G. Good, R. Kendrick, E. Sciammarella, and S. Whitman
 (Chicago Department of Public Health); M. Bousefield (City of
 Chicago Department of Planning); A. Dekker and K. Suarez (Chi-
 cago Osteopathic Hospital); W. Brickman, J. Daaboul, S. Good-
 man, and M. Klein-Gitelman; B. Pries, G. Richards, B. Silverman,
 and D. Zimmermann (Children’s Memorial Hospital); P. Mueller,
 G. Schneider, and A. Ziai (Christ Medical Center); R. O’Mara
 (Rush University Medical Center); H. Weiss, and L. Yu (Catholic
 Health Partners); J. Duff, L. Fogelfeld, R. Plides, H.-J. Rhim, M.
 Sullivan, and M. Weigensberg (Cook County Hospital); S. Duck
 and D. Edidin (Edvanston Hospital); J. Friedman, F. Medelli, and
 D. Tibbs (Gottlieb Hospital); S. Drungu and K. Sawyer (Grant
 Hospital); C. Abraina (Hines VA Hospital); A. Schneider and E.
 Shelton (Humana-Michael Reese Hospital); M. Winters (Illinois
 Association of School Nurses); A. Taft (Illinois Department of
 Public Aid); C. Nandi, M. Nelson, and V. Williams (Illinois
 Department of Public Health); M. Martin (Ingalls Memorial
 Hospital); A. Sion, P. Friedell, and M. Suggs
 (Jackson Park Hospital); A. Hagger and K. Reed (LaGrange
 Memorial Hospital); J. Baron, D. Nyland, and K. Vellodi
 (Little Company of Mary); G. Callahan and P. Kraitwald (Loretto
 Hospital); F. Hauck, M. Gottschalk, and W.P. Zeller (Loyola
 University Medical Center); E. Baumann, M. Chertack, K. Ghi,
 and W. Maurer (Lutheran General Hospital); D. Pierzchala
 (Macneal Hospital); C. Schroeder, and F. Ziai (Christ Hospital);
 R. O’Mara, A. Pellegrini, S. Duck, and D. Edidin (Evanston
 Hospital); S. Menendez (Mercy, Illinois Masonic Hospitals); D.
 Ansell, P. Butler, D. Cintron, K. Levin, and P. Mukundan (Mount
 Sinai Hospital); R. Ramsay-Goldman, A. Kohrman, L. Fachman,
 and T. Pitha (Northwestern University); G. Northrup (Norwe-
 giang-American Hospital); E. Constein (Oak Park, Westlake
 Hospitals); T. Kenar (Northwestern University); M. Jacob (Ravenswood
 Hospital); A. Davis, N. Dumbovik, M. Kreiter, and R. Levy
 (Rush-Presbyterian-St. Luke’s Hospital); S. Lambert and T. Cardona
 (St Elizabeth’s Hospital); L. Czarkowski and H. Gottesman (St Francis
 Hospital, Evanston); B. Pulliam (St James Hospital, Blue Island);
 J. Gilden and A. Llano (St Mary of Nazareth Hospital); B. Daniele-
 zyk and M. Lang (South Suburban Hospital); M. Oviedo (Swedish
 Covenant Hospital); R. Cunningham, B. Price, and J. Schwartz
 (EHS Trinity Hospital); R. Briars, J. Cara, L. Cole, E.Ekwo, C.
 Ober, G. Bell, R. Rosenfield, I. Rosenthal, and F. Thorp (University
 of Chicago Hospitals); and I. Brodsky, Y.T. Chang, B. Gerber,
 K. Herold, and F. Ziai (University of Illinois at Chicago Hospital).

REFERENCES

1. Pinhas-Hamiel O, Dolan LM, Daniels SR, Standiford D, Khoury PR,
Zeitler P. Increased incidence of non-insulin-dependent diabetes melli-

2. Fagot-Campagna A, Pettitt DJ, Engelgau MM, et al. Type II diabetes
among North American children and adolescents: an epidemiologic

obese African-American adolescents with NIDDM. Diabetes Care.
1997;20:484–486

4. Lipton RB, Hagopian W, Nichol L, Baumann E, Drum M. Can
basic epidemiologic information distinguish type 2 from type 1 diabetes
in minority children [abstract]? Diabetes. 2002;51(suppl 2):A222

5. Wilkin TJ. For debate—the accelerator hypothesis: weight gain as the
missing link between type 1 and type 2 diabetes. Diabetesologia.
2001;44:914–922

life is associated with an increased risk of type 1 (insulin-dependent)

7. Hypponen E, Virtanen SM, Kenward MG, Knip M, Akerblom HK; The
Childhood Diabetes in Finland Study Group. Obesity, increased linear
2000;23:1755–1760

8. Das UN. Is obesity an inflammatory condition? Nutrition. 2001;17:
953–966

9. Lipton RB, Fivecoat JA. High risk of IDDM in African-American and
1995;18:476–482

10. Lipton R, Keenan H, Onyemere KU, Freels S. Incidence and onset fea-
tures of diabetes in African American and Latino children, Chicago,

11. Word L, Perkins R. Building a Spanish Surname List for the 1990’s—A
New Approach to an Old Problem. Washington, DC: Population Division,
US Bureau of the Census; 1996

Analysis Add. No. 314. Vital and Health Statistics, Centers for Disease
Control and Prevention; 2000

Re-hospitalization after diagnosis of diabetes varies by gender and socioeco-
nomic status in African American and Latino young people. Pediatr

15. Jones KL. Non-insulin-dependent diabetes in children and adolescents:

16. Scott CR, Smith JM, Cradock MM, Pihoker C. Characteristics of youth-
onset non-insulin-dependent diabetes mellitus and insulin-dependent

17. United States Department of Commerce, Bureau of the Census. The
1997;130:2871–2875

18. Libman IM, Pietropaolo M, Arslanian SA, LaPorte RE, Becker
DJ. Changing prevalence of overweight children and adolescents at

19. Libman IM, Pietropaolo M, Arslanian SA, LaPorte RE, Becker DJ. Evi-
dence for heterogeneous pathogenesis of insulin-treated diabetes in

20. Onkamo P, Vaananen S, Karvonen M, Tuomilehto J. Worldwide in-
crease in incidence of type 1 diabetes—the analysis of the data on

M, Arslanian SA, LaPorte RE, Becker DJ. The Finnish Diabetes
Mondiale (DiaMond) Project Group. Incidence of childhood type 1 diabetes worldwide. Diabe-
tes Care. 2000;23:1516–1526

22. Macaluso CJ, Bauer UE, Deeb LC, et al. Type 2 diabetes among Florida
2002;117:373–379
Obesity at the Onset of Diabetes in an Ethnically Diverse Population of Children: What Does It Mean for Epidemiologists and Clinicians?
Rebecca B. Lipton, Melinda Drum, Deborah Burnet, Barry Rich, Andrew Cooper, Elizabeth Baumann and William Hagopian

Pediatrics 2005;115;e553
DOI: 10.1542/peds.2004-1448
Obesity at the Onset of Diabetes in an Ethnically Diverse Population of Children: What Does It Mean for Epidemiologists and Clinicians?
Rebecca B. Lipton, Melinda Drum, Deborah Burnet, Barry Rich, Andrew Cooper, Elizabeth Baumann and William Hagopian
Pediatrics 2005;115:e553
DOI: 10.1542/peds.2004-1448

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/115/5/e553