Frequency of Infective Endocarditis Among Infants and Children With *Staphylococcus aureus* Bacteremia

Anne Marie Valente, MD*‡; Rajiv Jain, MD§; Mark Scheurer, MD‡; Vance G. Fowler, Jr, MD‡¶; G. Ralph Corey, MD¶‖; A. Resai Bengur, MD#; Stephen Sanders, MD**; and Jennifer S. Li, MD*¶

ABSTRACT. Purpose. The prevalence of infective endocarditis (IE) among children with *Staphylococcus aureus* bacteremia (SAB) is unknown. The objective of this study was to determine prospectively the prevalence of IE among pediatric patients with SAB in a large tertiary care center.

Methods. Between July 1998 and June 2001, all children who developed SAB whose parent/guardian signed informed consent underwent echocardiography. Clinical and follow-up results were collected prospectively. Endocarditis was classified according to the modified Duke criteria.

Results. Fifty-one children developed SAB during the study interval. Definite (6 patients [11.8%]) or possible (4 patients [7.8%]) IE was present in 10 of 51 (20%) children with SAB. Most children (73%) developed bacteremia as a consequence of an infected intravascular device. Children with underlying congenital heart disease had a significantly higher prevalence of definite or possible IE, compared with those with structurally normal hearts (53% vs 3%). All patients with definite IE had multiple positive blood cultures. Mortality was high among patients with and without IE (40% vs 12%).

Conclusions. In this study, the prevalence of definite IE among children with SAB was ~12% and was frequently associated with congenital heart disease and multiple positive blood cultures. The mortality for children with SAB and definite or possible *S aureus* IE is high. *Pediatrics* 2005;115:e15-e19. URL: www.pediatrics.org/cgi/doi/10.1542/peds.2004-1152; infective endocarditis, *Staphylococcus aureus*, congenital heart disease.

ABBREVIATIONS. SAB, *Staphylococcus aureus* bacteremia; IE, infective endocarditis; TTE, transthoracic echocardiogram; TEE, transesophageal echocardiogram.

From the Departments of *Pediatrics* and ‡Medicine and ¶Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina; †Department of Medicine, State University of New York, Buffalo, New York; ‡Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina; #Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University, Cleveland, Ohio; and **Departamento Medico Chirurgico di Cardiologia Pediatrica, Ospedale Pediatrico Bambino Gesù, Rome, Italy.

Accepted for publication Aug 9, 2004. doi:10.1542/peds.2004-1152

No conflict of interest declared.

Address correspondence to Anne Marie Valente, MD, Division of Pediatric Cardiology, Duke University, Box 3090, Durham, NC 27710. E-mail: valent010@mc.duke.edu

PEDIATRICS (ISSN 0031-4005). Copyright © 2005 by the American Academy of Pediatrics.

www.pediatrics.org/cgi/doi/10.1542/peds.2004-1152
TABLE 1. The Modified Duke Criteria

Definite IE
Pathologic criteria
(1) Microorganisms demonstrated by culture or histologic examination of a vegetation, a vegetation that has embolized, or an intracardiac abscess specimen; or
(2) Pathologic lesions, vegetation, or intracardiac abscess confirmed by histologic examination showing active endocarditis

Clinical criteria
(1) 2 major criteria;
(2) 1 major criterion and 3 minor criteria; or
(3) 5 minor criteria

Possible IE
(1) 1 major criterion and 1 minor criterion; or
(2) 3 minor criteria

Rejected
(1) Firm alternate diagnosis explaining evidence of IE;
(2) Resolution of IE syndrome with antibiotic therapy for ≤4 days;
(3) No pathologic evidence of IE at surgery or autopsy with antibiotic therapy for ≤4 days; or
(4) Does not meet criteria for possible IE, as described above

Outcomes

Patient outcomes were established for a minimum of 6 months after the initial positive blood culture by review of the medical records. Outcomes were defined as (1) cure (completion of therapy for SAB and no evidence of recurrent staphylococcal infection within the follow-up period); (2) recurrence (completion of therapy for SAB and clinical resolution of infection with culture-confirmed recurrent SAB [within the follow-up period]); and (3) death during the study period.

Statistical Analysis

For continuous variables, data are expressed as the mean value ± SD unless otherwise specified. Comparisons were made between continuous variables by using the Student’s t test. Categorical variables are expressed as a percentage. For categorical variables, comparisons between groups were made by using the χ² test. The Fisher’s exact test and Wilcoxon rank sum were applied to nonnormally distributed data. All statistical tests were 2-tailed, and results were considered to be significant at P values < .05.

RESULTS

Clinical Characteristics of All Patients With SAB

Sixty-six children with SAB were identified in a 3-year period. Fifty one (77%) were enrolled for additional analysis after informed consent was obtained from their parent or guardian and assent was obtained, as appropriate, from the child. The clinical characteristics of these children are listed in Table 3. The gender distribution was nearly equal, and the median age of children enrolled was 16 weeks (1 week to 16 years old). Of the 51 children, 17 (34%) had congenital heart disease, including 6 with patent ductus arteriosus. Prematurity occurred in 31% of patients, and 20% had comorbid conditions.

The majority of children (73%) had an intravascular catheter in place at the time of bacteremia. Other presumed sources of SAB included postoperative mediastinitis (3 patients), urinary tract infection (1 patient), and inadvertent parenteral administration of breast milk contaminated with S aureus (1 patient). The organism was methicillin resistant in 15 patients.
(31%) and hospital acquired in 13 patients (87%). The most common metastatic disease was osteomyelitis, which occurred in 5 patients. Other sites of infection included pericarditis, upper extremity thrombus, and necrotizing enterocolitis.

Blood Cultures

Of the 51 patients enrolled, 50 had at least 1 follow-up blood culture; 25 patients (49%) had at least 1 positive follow-up blood culture. All 6 patients with definite IE had subsequent blood cultures positive for *S aureus*, an average of 4 positive cultures drawn 2 to 4 days after initiation of antibiotic therapy. Of the 4 patients that were classified as possibly having endocarditis, 2 of 4 had subsequent positive blood cultures.

Clinical Characteristics of IE Patients

Of the 10 patients with possible or definite endocarditis, 9 patients had hospital-acquired infection, and 8 patients had infections due to methicillin-sensitive *S aureus*. The presumed source of bacteremia was an intravascular catheter in 7 patients (70%). No association was found between the white blood cell count or temperature and risk for IE. Three patients were premature, and 9 had congenital heart disease.

Of these 9 patients, 5 were diagnosed with IE within 2 weeks of surgical intervention for their congenital heart disease.

All 6 patients with definite IE met 2 major criteria as defined in Table 2. Each patient had serologic evidence of SAB and echocardiographic evidence of valvular vegetations. The 4 patients with possible IE
met 1 major criterion (serologic evidence of SAB) and 1 minor criterion (preexisting heart disease).

Echocardiography

The 41 patients with SAB had no evidence of abnormalities consistent with IE. Of 10 patients with IE, 6 had valvular vegetations identified by echocardiography: 3 had vegetations on the mitral valve, and 3 had vegetations on the tricuspid valve. Echocardiography did not reveal any new valvular regurgitation, perforation, or abscess.

Therapy and Outcome

All 10 patients with IE either completed a 42-day course of intravenous antibiotics (9 patients) or died (1 patient). One patient with endocarditis developed recurrent bacteremia after completion of therapy. The patient who did not have evidence of metastatic infection received an average of 15 days of antibiotic therapy.

Patient outcomes are reported in Table 4. The 1-year mortality rate for children with SAB was 18%. The 1-year mortality rate for patients with IE was 40%, whereas it was 12% for patients without IE. Of the 9 deaths, 4 were in children who were treated for IE; the other 5 children had multiorgan failure in the setting of chronic disease.

DISCUSSION

S aureus is a serious, common cause of bacteremia in modern medical practice. Although rates of IE in adults who develop SAB is well documented, its frequency in pediatric populations is less well characterized. The present investigation represents the largest prospective cohort study evaluating children with SAB using both clinical characteristics and transthoracic echocardiography. This investigation yielded several key findings.

First, 20% of the patients in this study had definite or possible IE. Previous studies of the rates of IE in children with SAB have reported varying results. One recent investigation demonstrated that the rate of endocarditis among 56 South African children with SAB was 11%. However, the generalizability of these results is limited, because patient and treatment characteristics in this developing region are likely to differ widely from current practice conditions encountered by practitioners in industrialized nations. The current investigation characterizes the nature of *S aureus* infection in children hospitalized in a large tertiary care center. One striking finding is that 9 of the 10 children with endocarditis had an underlying congenital heart defect. SAB in children with congenital heart disease is highly associated with IE. The minor diagnostic criteria for IE include a predisposing heart condition. One of these patients, a neonate with cleft mitral valve, was only discovered at the time of echocardiogram during this study. Echocardiography is therefore a useful tool in the assessment of children with SAB, particularly neonates who may have undiagnosed congenital heart disease. Interestingly, none of the 6 neonates with an isolated patent ductus arteriosus had evidence of IE in this investigation.

Second, most patients (63%) in this study had health-care–associated bacteremia. This finding has been noted in adults but not in children. Most children (73%) developed bacteremia as a consequence of an infected intravascular device, which may be especially true in premature neonates. Although the significance of IE associated with an infected intravascular catheter has been reported in adults, this current investigation examining the association among children did not reach statistical significance. Of the 10 patients with IE in this study, 3 were premature. There have been several reports of *S aureus* IE in premature neonates. Armstrong et al11 reported 3 extremely low birth weight infants, all with percutaneous central venous catheters who developed *S aureus* IE, confirmed by echocardiography. Similarly, both of the preterm neonates in the present report with definite endocarditis also had percutaneous central venous catheters in place.

All the children in this investigation with definite IE had multiple cultures positive for *S aureus*. These findings agree with a recent prospective cohort investigation of >700 consecutive adult patients with SAB, in whom the presence of persistent bacteremia was independently associated with complicated infections. These findings also support the practice of multiple blood cultures on separate days, as recommended in a recent American Heart Association scientific statement on IE in childhood. Given the fact that all the children with IE in this study had clinically occult cardiac involvement, the presence of blood cultures positive after 2 to 4 days should suggest the presence of this potentially lethal complication.

Other minor diagnostic criteria for IE are much more difficult to appreciate in children, including vascular phenomena and immunologic phenomena. In fact, no children in this study had any of these clinical findings suggestive of endocarditis. This high rate of clinically occult IE emphasizes the need for echocardiographic screening among most children who develop SAB, particularly if they have congenital heart disease and/or persistently positive blood cultures.

All patients underwent transthoracic echocardiography. Children often have better transthoracic echocardiographic images than adults because of the use of higher-frequency transducers (8-12 MHz, the same as used in adult transesophageal echocardiography [TEE]), with better image resolution. The limits of

<table>
<thead>
<tr>
<th>TABLE 4. Outcomes of 51 Children With SAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients With Bacteremia (N = 41, n (%)</td>
</tr>
<tr>
<td>Cure 36 (88%)</td>
</tr>
<tr>
<td>Recurrence 6 (15%)</td>
</tr>
<tr>
<td>Death 5 (12%)</td>
</tr>
</tbody>
</table>

NS indicates not significant.
resolution of using TTE in children may thus be comparable to TEE in adults.

However, transthoracic echocardiography does not detect all intracardiac vegetations, even in infants and children. It is accepted that vegetations must be >1 mm to be visualized by echocardiography. Thus, failure to detect a vegetation by TTE does not exclude IE. The yield rate of TTE, however, is significant when the pretest probability of IE is intermediate to high, as it is in patients with SAB. Although TEEs were not done in our cohort, the patients with negative TTEs were treated for an average of 2 weeks, which is inadequate therapy for IE. However, none had recurrence of disease during follow-up; therefore, we believe the prevalence of IE was not underestimated.

CONCLUSIONS

The prevalence of definite IE in this cohort of prospectively identified children with SAB, ~12%, was almost identical to that reported for adult patients with SAB. In children who met the criteria for IE, the mortality rate was 40%. Risk factors for IE in this investigation, which included the presence of congenital heart disease and/or multiple positive blood cultures, should increase suspicion for this diagnosis.

ACKNOWLEDGMENTS

We thank the Duke Pediatric Cardiology Echocardiography Laboratory director J. René Herlong, MD, scheduler Judith Neal, and ultrasonographers James W. Nesmith, Kimberly Moore, Marie Morris, and Michele Kappeler for contributions to this work.

REFERENCES

Frequency of Infective Endocarditis Among Infants and Children With *Staphylococcus aureus* Bacteremia

Anne Marie Valente, Rajiv Jain, Mark Scheurer, Vance G. Fowler, Jr, G. Ralph Corey, A. Resai Bengur, Stephen Sanders and Jennifer S. Li

Pediatrics 2005;115:e15

DOI: 10.1542/peds.2004-1152 originally published online December 15, 2004;

Updated Information & Services

including high resolution figures, can be found at:

http://pediatrics.aappublications.org/content/115/1/e15

References

This article cites 14 articles, 1 of which you can access for free at:

http://pediatrics.aappublications.org/content/115/1/e15.full#ref-list-1

Subspecialty Collections

This article, along with others on similar topics, appears in the following collection(s):

Fetus/Newborn Infant

http://classic.pediatrics.aappublications.org/cgi/collection/fetus:newborn_infant_sub

Infectious Disease

http://classic.pediatrics.aappublications.org/cgi/collection/infectious_diseases_sub

Cardiology

http://classic.pediatrics.aappublications.org/cgi/collection/cardiology_sub

Permissions & Licensing

Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:

https://shop.aap.org/licensing-permissions/

Reprints

Information about ordering reprints can be found online:

http://classic.pediatrics.aappublications.org/content/reprints
Frequency of Infective Endocarditis Among Infants and Children With
Staphylococcus aureus Bacteremia
Anne Marie Valente, Rajiv Jain, Mark Scheurer, Vance G. Fowler, Jr, G. Ralph Corey, A. Resai Bengur, Stephen Sanders and Jennifer S. Li
Pediatrics 2005;115:e15
DOI: 10.1542/peds.2004-1152 originally published online December 15, 2004;

The online version of this article, along with updated information and services, is
located on the World Wide Web at:
http://pediatrics.aappublications.org/content/115/1/e15