Relief of Pain and Anxiety in Pediatric Patients in Emergency Medical Systems

ABSTRACT. Whether a component of a disease process, the result of acute injury, or a product of a diagnostic or therapeutic procedure, pain should be relieved and stress should be decreased for pediatric patients. Control of pain and stress for children who enter into the emergency medical system, from the prehospital arena to the emergency department, is a vital component of emergency care. Any barriers that prevent appropriate and timely administration of analgesia to the child who requires emergency medical treatment should be eliminated. Although more research and innovation are needed, every opportunity should be taken to use available methods of pain control. A systematic approach to pain management and anxiolysis, including staff education and protocol development, can have a positive effect on providing comfort to children in the emergency setting. Pediatrics 2004;114:1348–1356; pain, stress, anxiety, analgesia, opiates, topical anesthesia.

BACKGROUND

A systematic approach to pain management is required to ensure pain relief for children who enter into the emergency medical system, which includes all emergency medical transport systems as well as the emergency department (ED). Over the past 20 years, improvements in the recognition and treatment of pain in children have led to changes in the approach to pain management for acutely ill and injured pediatric patients. Studies have shown an increase in opiate use in children with fractures.1–3 However, there is still progress to be made; the administration of analgesia in children varies by age and lags behind adults, and our youngest patients are at the highest risk of receiving inadequate analgesia.1–4 There is also wide variation in pain management practice by different EDs and health care professionals; in some settings, analgesics are underused in the care of children with pain.2,5

Inadequate sedation and pain control has negative implications for pediatric patients. Neonates who undergo procedures with inadequate analgesia have long-standing alterations in their response to and perceptions of painful experiences.6–10 Inadequate pain control during oncology procedures leads to significantly increased pain scores for subsequent painful procedures.11 Posttraumatic stress disorder can occur after procedures or stressful medical experiences that are not accompanied by appropriate pain control or sedation.12,13

Ethnicity affects pain management from both a patient and health care professional perspective. It is clear that ethnicity is an important contributor to an individual’s pain perception as well as to manifested behavioral distress and anxiety.14–17 However, no predictable patterns have emerged in regard to a consistent pain experience within ethnic groups. Studies have noted that Hispanic and black individuals with long-bone fractures were less likely to receive analgesics than were non-Hispanic white individuals.18,19 A review of the National Hospital Ambulatory Medical Care Survey from 1992 to 1997 demonstrated that among patients with fractures, black children covered by Medicaid were least likely to receive parenteral sedation and analgesia.20 However, in other studies, analgesic administration was not associated with ethnicity.21,22 From a health care professional perspective, the clinician’s own cultural background and bias may affect the decision of whether to administer analgesics.

A system-wide approach to pain management is required for children who enter into the emergency medical system. Pain management awareness and techniques should be woven into the fabric of the emergency medical system through education, protocol development, and changes in attitudes. The purpose of this report is to provide information to optimize the comfort of children whether they are cared for in the emergency setting or other environments.

STATEMENT OF THE PROBLEM

Barriers in general, as well as those intrinsic to the emergency setting, can affect the provision of ade-
The myths that children do not feel pain the same way adults do and that pain has no untoward consequences in children still exist. Children's pain is underestimated because of a lack of adequate assessment tools and the inability to account for the wide range of children's developmental stages. Pain is often undermedicated because of fears of oversedation, respiratory depression, addiction, and unfamiliarity with use of sedative and analgesic agents in children.

In the ED, children often present with a constellation of symptoms but no final diagnosis; they are usually unknown to the treating clinician, have a wide range of medical or surgical problems, and are unlikely to be fasting on arrival. These factors make their assessment and the selection of appropriate analgesic intervention more complicated. As well, the emergency setting can be a busy, fast-paced environment in which heightened patient and parental anxiety increases the perception of pain and makes its treatment more difficult.

Analgesic agents typically used for pain in other settings might not be used in the ED because of concerns regarding masking of symptoms and prevention of appropriate diagnoses. Topical anesthetics may be underused because of concerns regarding delay in definitive treatment, cost, or lack of availability.

Until recently, education in pain management was not emphasized for clinical staff. Optimal pain management requires a thorough understanding of pain assessment and management strategies. Prehospital providers typically receive inadequate pain management instruction, and pain management has received little emphasis in undergraduate or graduate medical education.

NEW INFORMATION

Prehospital Care

The development of pain assessment and management protocols specifically for prehospital providers, along with educational initiatives, can improve pain management in the field. Several adult studies and 1 pediatric trial show that analgesics such as opioids and tramadol hydrochloride can be used in prehospital protocols to decrease pain scores without causing respiratory depression. Alternative delivery systems, such as inhaled nitrous oxide, could offer pain control without requiring intravenous access, providing advantages in the field as well as in the hospital setting. Some systems have implemented a "toolbox" of distraction equipment for emergency medical services (EMS) units as an adjunct to providing pain relief in the anxious, uncomfortable child.

Assessment and Management of Pain, Stress, and Anxiety in the ED

The Environment

The creation of an appropriate environment is essential to minimize the pain and distress of a child's ED visit. Ideally, each child should be placed in a private room. This room should provide a child-friendly, calming environment. Colorful walls, pictures on the ceiling, and a collection of toys and games will minimize fear induced by this strange setting.

Nonpharmacologic or stress management and emotional support are essential to providing a comfortable environment for the child. Distraction can range from simple techniques, such as a bubble blower or pinwheel used by the child during a painful injection, to structural changes, such as outfitting each procedure room with video cassette players to provide music and distraction stations equipped with bubble columns, light wands, and imagery projectors. Training the staff in distraction and imagery increases the use of these techniques.

A child life specialist based in the ED has the ability to (1) decrease anxiety and pain perception, (2) teach the child and staff simple distraction techniques, and (3) support family involvement in the child's care. The child life specialist has an important role; he or she is one of a few professionals in the emergency setting who is not in a position to cause emotional or physical pain to the child.

Allowing (but not requiring) family presence during painful procedures will also be of benefit. Although there is no evidence that family presence decreases pain, their presence for procedures does decrease parental and child distress. Family presence does not increase anxiety of the child or decrease the procedure success rate of experienced clinicians.

Pain Assessment in the ED

Assessment is the first step in the recognition and treatment of pain. Assessment should begin at the triage desk, the entry point to all EDs, allowing triage to become the focal point for improving pain management. The Joint Commission on Accreditation of Healthcare Organizations standards include mandatory pain assessments for all hospital patients. Pain should be assessed routinely, along with vital signs, and reassessed during the ED stay. Pain should be monitored, and intervention should be begun and modified as the clinical situation demands.

The clinical standard for pain assessment is a self-report scale. Several well-validated scales exist for children as young as 3 years to report their own pain level. The Wong-Baker Faces scale and the 10-cm Visual Analog Scale have been used successfully in many EDs caring for children. For those who are unable to use self-report scales, behavioral scales can be combined with an evaluation of the patient's history and physical findings to assess the level of a child's pain.

Children with severe pain require immediate triage, pain assessment, and pain treatment. Patients with less acute conditions should also receive analgesia. Treating pain in patients with less acute conditions does not interfere with physical examination or diagnosis. Protocols should be developed to allow for the delivery of appropriate medications such as acetaminophen, ibuprofen, or oral opiates to these patients (Table 1).
TABLE 1. Triage Oral Analgesic Administration Guidelines

<table>
<thead>
<tr>
<th>Purpose</th>
<th>To provide analgesic therapy to patients presenting to triage with a complaint of pain</th>
</tr>
</thead>
</table>
| Procedure | 1. Pain assessment
2. Immediate triage to department for all those with severe pain as assessed by triage nurse and consideration of pain score
3. For those not requiring immediate evaluation with pain score >3 (0–10 scale) or chief complaint consistent with pain, consider administration of oral analgesic
4. Assess recent analgesic use |
| Contraindications | 1. Allergy to analgesic (consider alternative)
2. NPO status (if patient may require procedural sedation or general anesthesia, consult with a physician before analgesic administration) |
| Medications | 1. Ibuprofen (avoid if the patient has an aspirin allergy, anticipated surgery, bleeding disorder, hemorrhage, or renal disease)
2. Acetaminophen (avoid if the patient has hepatic disease or dysfunction)
3. Acetaminophen with codeine or other oral opiate |

Triage should be used as an opportunity to predict the future pain medication needs of the ED patient. For example, in 1 inner city pediatric ED, 90% of patients requiring intravenous access did not undergo this procedure until at least 60 minutes after triage. A prediction model could be developed whereby the patient’s chief complaint and medical history, combined with an experienced triage nurse assessment, could determine with some accuracy which patients have a high probability of needing intravenous access, and these patients could receive topical anesthetic application at triage. These findings could be adapted to develop topical anesthetic protocols for painful procedures in other emergency centers, taking into account their patient volume, acuity, and flow characteristics (Table 2). Similar protocols should be developed for topical anesthetic placement for laceration repair at triage (Table 3).

Controlling Pain Related to Minor Procedures

Topical anesthetics can be placed proactively as described previously to control the pain associated with minor procedures. Procedures can be delayed in some cases in which topical anesthetic is not placed proactively. Some topical anesthetics have been developed that produce anesthesia more rapidly than eutectic mixture of local anesthetics (EMLA [AstraZeneca, Wilmington, DE]). A topical liposomal 4% lidocaine cream (LMX4 [Ferndale Labs, Ferndale, MI]) provides anesthesia in approximately 30 minutes. Lidocaine iontophoresis provides superior anesthesia to EMLA in 10 minutes or less; however, approximately 5% of children find the sensation caused by iontophoretic drug delivery to be unpleasant. Vapocoolant sprays that have immediate onset of action can be used successfully for injection pain in children; however, they are not effective for intravenous line placement.

Laceration repair should be completed with an emphasis on minimizing pain and anxiety. Several topical anesthetic/vasoconstrictor combinations such as lidocaine, epinephrine, and tetracaine (LET), which can be made by the in-hospital pharmacy as a liquid or gel preparation, provide excellent wound anesthesia in 20 to 30 minutes. EMLA cream also provides topical anesthesia for laceration repair, although it is not approved by the US Food and Drug Administration for this purpose. Table 2 describes previously to control the pain associated with minor procedures. Procedures can be delayed in some cases in which topical anesthetic is not placed proactively. Some topical anesthetics have been developed that produce anesthesia more rapidly than eutectic mixture of local anesthetics (EMLA [AstraZeneca, Wilmington, DE]). A topical liposomal 4% lidocaine cream (LMX4 [Ferndale Labs, Ferndale, MI]) provides anesthesia in approximately 30 minutes. Lidocaine iontophoresis provides superior anesthesia to EMLA in 10 minutes or less; however, approximately 5% of children find the sensation caused by iontophoretic drug delivery to be unpleasant. Vapocoolant sprays that have immediate onset of action can be used successfully for injection pain in children; however, they are not effective for intravenous line placement.

Laceration repair should be completed with an emphasis on minimizing pain and anxiety. Several topical anesthetic/vasoconstrictor combinations such as lidocaine, epinephrine, and tetracaine (LET), which can be made by the in-hospital pharmacy as a liquid or gel preparation, provide excellent wound anesthesia in 20 to 30 minutes. EMLA cream also provides topical anesthesia for laceration repair, although it is not approved by the US Food and Drug Administration for this purpose. Table 2 describes previously to control the pain associated with minor procedures. Procedures can be delayed in some cases in which topical anesthetic is not placed proactively. Some topical anesthetics have been developed that produce anesthesia more rapidly than eutectic mixture of local anesthetics (EMLA [AstraZeneca, Wilmington, DE]). A topical liposomal 4% lidocaine cream (LMX4 [Ferndale Labs, Ferndale, MI]) provides anesthesia in approximately 30 minutes. Lidocaine iontophoresis provides superior anesthesia to EMLA in 10 minutes or less; however, approximately 5% of children find the sensation caused by iontophoretic drug delivery to be unpleasant. Vapocoolant sprays that have immediate onset of action can be used successfully for injection pain in children; however, they are not effective for intravenous line placement.

Laceration repair should be completed with an emphasis on minimizing pain and anxiety. Several topical anesthetic/vasoconstrictor combinations such as lidocaine, epinephrine, and tetracaine (LET), which can be made by the in-hospital pharmacy as a liquid or gel preparation, provide excellent wound anesthesia in 20 to 30 minutes. EMLA cream also provides topical anesthesia for laceration repair, although it is not approved by the US Food and Drug Administration for this purpose. Table 2 describes previously to control the pain associated with minor procedures. Procedures can be delayed in some cases in which topical anesthetic is not placed proactively. Some topical anesthetics have been developed that produce anesthesia more rapidly than eutectic mixture of local anesthetics (EMLA [AstraZeneca, Wilmington, DE]). A topical liposomal 4% lidocaine cream (LMX4 [Ferndale Labs, Ferndale, MI]) provides anesthesia in approximately 30 minutes. Lidocaine iontophoresis provides superior anesthesia to EMLA in 10 minutes or less; however, approximately 5% of children find the sensation caused by iontophoretic drug delivery to be unpleasant. Vapocoolant sprays that have immediate onset of action can be used successfully for injection pain in children; however, they are not effective for intravenous line placement.

Laceration repair should be completed with an emphasis on minimizing pain and anxiety. Several topical anesthetic/vasoconstrictor combinations such as lidocaine, epinephrine, and tetracaine (LET), which can be made by the in-hospital pharmacy as a liquid or gel preparation, provide excellent wound anesthesia in 20 to 30 minutes. EMLA cream also provides topical anesthesia for laceration repair, although it is not approved by the US Food and Drug Administration for this purpose. Table 2 describes previously to control the pain associated with minor procedures. Procedures can be delayed in some cases in which topical anesthetic is not placed proactively. Some topical anesthetics have been developed that produce anesthesia more rapidly than eutectic mixture of local anesthetics (EMLA [AstraZeneca, Wilmington, DE]). A topical liposomal 4% lidocaine cream (LMX4 [Ferndale Labs, Ferndale, MI]) provides anesthesia in approximately 30 minutes. Lidocaine iontophoresis provides superior anesthesia to EMLA in 10 minutes or less; however, approximately 5% of children find the sensation caused by iontophoretic drug delivery to be unpleasant. Vapocoolant sprays that have immediate onset of action can be used successfully for injection pain in children; however, they are not effective for intravenous line placement.

Laceration repair should be completed with an emphasis on minimizing pain and anxiety. Several topical anesthetic/vasoconstrictor combinations such as lidocaine, epinephrine, and tetracaine (LET), which can be made by the in-hospital pharmacy as a liquid or gel preparation, provide excellent wound anesthesia in 20 to 30 minutes. EMLA cream also provides topical anesthesia for laceration repair, although it is not approved by the US Food and Drug Administration for this purpose. Table 2 describes previously to control the pain associated with minor procedures. Procedures can be delayed in some cases in which topical anesthetic is not placed proactively. Some topical anesthetics have been developed that produce anesthesia more rapidly than eutectic mixture of local anesthetics (EMLA [AstraZeneca, Wilmington, DE]). A topical liposomal 4% lidocaine cream (LMX4 [Ferndale Labs, Ferndale, MI]) provides anesthesia in approximately 30 minutes. Lidocaine iontophoresis provides superior anesthesia to EMLA in 10 minutes or less; however, approximately 5% of children find the sensation caused by iontophoretic drug delivery to be unpleasant. Vapocoolant sprays that have immediate onset of action can be used successfully for injection pain in children; however, they are not effective for intravenous line placement.
Lidocaine can be used alone in urgent situations or as an adjunct to topical anesthetics. Lidocaine can be injected in an almost painless manner. This technique includes buffering the anesthetic with bicarbonate, warming the lidocaine before injection, and injecting slowly with a small-gauge needle.88–92 Lidocaine buffered with bicarbonate made by a pharmacy in advance can be stocked in the ED and will remain stable for up to 30 days.93,94 Lidocaine injection decreases the pain of venous cannulation without affecting procedural success rate.87

Neonatal Pain Management in the ED

Simple changes in practice can minimize painful stimuli for infants. Protocols for topical anesthetic placement should include neonates. Use of EMLA for procedures ranging from circumcision to venipuncture is safe in newborns and even preterm infants.95–97

Recent studies have suggested methods by which neonatal distress during painful procedures can be minimized. Sucrose has been found to decrease the response to noxious stimuli such as heel sticks and injections in neonates.98–101 This effect seems to be strongest in the newborn infant and decreases gradually over the first 6 months of life.98–101 Nursing protocols that allow for the use of sucrose before painful procedures are in place at many hospitals (Table 4). A 12% to 25% sucrose solution that is made by the pharmacy or is available commercially can be used (Sweet-Ease, Children’s Medical Ventures, Norwell, MA). The use of a pacifier alone or in conjunction with sucrose also has been shown to have analgesic effects in neonates undergoing routine venipuncture.102 Skin-to-skin contact of an infant with his or her mother and breastfeeding during a procedure decrease pain behaviors associated with painful stimuli.103,104

Available evidence supports the use of local and topical anesthetic for lumbar puncture in neonates.105,106 Protocols can allow for the timely placement of topical anesthetic, or injected buffered lidocaine can be used at the site of needle insertion before the procedure. Concerns over the increased difficulty of lumbar puncture after local anesthetic use have proved to be unfounded.105,107

Pain can be decreased in neonates by the elimination of heel sticks and intramuscular injections. Venipuncture seems to be less painful than heel lancing for obtaining blood for diagnostic testing.108 When the intramuscular route is necessary, topical anesthetic should be used if time permits.109 Use of distraction techniques discussed previously, ice, and less painful injection techniques can also be efficacious.110–113 The use of lidocaine as the diluent for ceftriaxone can decrease the pain of intramuscular injection.114

Does the Appropriate Use of Analgesics Make Evaluation More Difficult?

There is no evidence that pain management masks symptoms or clouds mental status, preventing adequate assessment and diagnosis. For patients with abdominal pain, several adult studies have shown that pain medications such as morphine can be used without affecting diagnostic accuracy.115–117 A recent pediatric study demonstrates similar findings.118 Clinical experience suggests that the use of pain medication makes children more comfortable and the examination of the patient’s abdomen and diagnostic testing (such as ultrasonography) easier, thus aiding in diagnosis. In the child who has suffered multisystem trauma, small titrated doses of opiates can be used to provide pain relief without affecting the clinical examination or the ability to perform neurologic assessments.119,120 The development of pain protocols can improve the management of children who suffer major trauma.121 Regional anesthesia should also be considered for patients who have injuries that are amenable to these techniques.122,123 Additional studies evaluating these practices in pediatric patients are necessary but should not delay the development of protocols for the use of analgesics in patients with acute abdominal pain and multisystem trauma.

Administration of Pain Medications

Optimal pain management requires expeditious pain assessment and the rapid administration of systemic opioid pain medication to patients in severe pain. This may occur through the intravenous route, which allows for rapid relief of pain and drug titration as necessary and provides a route for other medications. Delivery of pain medications through the intramuscular route is painful both at the time of delivery and for days afterward and does not allow for titration of drug dose. Adjunctive pain medications such as nonsteroidal antiinflammatory drugs (NSAIDS) can be used judiciously in children with pain, acknowledging their known adverse effects such as antiplatelet activity and gastrointestinal and renal toxicity. Oral opiates and NSAIDs are appropriate for mild to moderate pain if the patient has no contraindications to receiving oral medications (ie, potential to require sedation or anesthesia).

Alternative routes of medication administration including oral, intranasal, transdermal, and inhaled should be used whenever possible. Nitrous oxide is a

TABLE 4. Guidelines for Use of Sucrose in the ED

| Indications | Use as an adjunct to limit the pain associated with procedures such as heel sticks, venipuncture, intravenous line insertion, arterial puncture, insertion of a Foley catheter, and lumbar puncture in neonates and infants younger than 6 months |
| Procedure | 1. Administer 2 mL of 25% sucrose solution by syringe into the infant’s mouth (1 mL in each cheek) or allow infant to suck solution from a nipple (pacifier) no more than 2 min before the start of the painful procedure |
| 2. Sucrose may be given for >1 procedure within a relatively short period of time but should not be administered more than twice in 1 h |
| 3. Sucrose seems to be more effective when given in combination with a pacifier; nonnutritive suck also contributes to calming the infant and decreasing pain-elicited distress |
| Contraindications | Avoid use if patient is under NPO restrictions |
potent analgesic that does not require venous access and is available in some EDs and EMS systems.43–47 Nitrous oxide should be used in conjunction with appropriate sedation guidelines and avoided in patients with pneumothorax, bowel obstruction, intracranial injury, and cardiovascular compromise.46,47 Nitrous oxide has many potential applications including anxiolysis for procedures such as intravenous access and laceration repair and pain control for burn debridement and fracture and dislocation reduction.

Pain medication should be provided in the ED as well as on discharge even for those with mild to moderate pain. Patients should get specific instructions in regard to dose and duration of use. Pain medication should be recommended on an around-the-clock basis for anyone in whom moderate pain is anticipated.

Need for Sedation Policies and Protocols in the ED

The use of sedative hypnotic medication may be required to bring pain and stress levels under adequate control for many procedures in the emergency medical system. Unfortunately, pain and anxiety are often difficult to differentiate in infants and toddlers.

Although many procedures are not intrinsically painful or can be performed painlessly with the use of a topical or local anesthetic, this does not obviate the use of pharmacologic agents to decrease the anxiety and stress in children undergoing procedures in the ED.

Excellent reviews have been published that describe the safe and effective use of sedation in the ED.124,125 Procedural sedation is generally combined with analgesia to minimize pain whenever the procedure is uncomfortable or painful. Analgesia may take the form of local anesthetics or systemic analgesics. Combinations of medications, particularly the addition of opiates to sedative medications, may increase the risk of respiratory depression and should only be used by individuals trained in airway management and resuscitation.126

Although the incidence of serious complications is low, it is imperative to develop ongoing policies that establish close monitoring of these patients. Current guidelines from the American Academy of Pediatrics (AAP), American Society of Anesthesiologists (ASA), and American College of Emergency Physicians127–130 all recommend a structured evaluation of children that allows risk stratification before beginning sedation. This evaluation should include issues such as preexisting medical conditions, focused airway examination, and consideration of nil per os (NPO) status. Recent data have confirmed the concept that adherence to a structured AAP/ASA-based sedation model can significantly decrease the risk of complications in the pediatric age group.131

A critical component of any sedation protocol is to require a trained observer to be solely responsible for monitoring the patient while the procedure is being performed.126,129,132 In addition, physicians who administer sedation and analgesia should have proven training and skills and ongoing training in the management of pediatric airways and resuscitation.

NPO guidelines for children receiving sedation in the ED are controversial. Many children who receive procedural sedation for emergencies have not fasted in accordance with published guidelines for elective procedures.133–136 Currently, there are insufficient data to determine the length of time that constitutes safety in regard to NPO status.134–140 Given the low incidence of adverse events during procedural sedation, larger studies are required to clearly define appropriate NPO duration.

Decisions regarding sedation of a child should be balanced by considering the urgency of the procedure, the effects of prolonged pain and anxiety, the depth and type of sedative and analgesic agents required, inconvenience to the patient and family, and the expenditure of finite ED resources as well as individual patient characteristics. A collaborative pediatric sedation database should be developed to help define the complications associated with these procedures.

Quality Improvement Programs

Any emergency medical system that provides treatment for children should have a demonstrated quality improvement program in which review of sedation and pain management practices in pediatric patients takes place at regular intervals. Transport and prehospital providers are essential components of this ongoing review. Indicators that should be evaluated include compliance with the use of validated pain scores, use of appropriate analgesics for specific disease states (whether severe or mild to moderate pain), use of topical anesthetics and other nonnoxious routes of analgesia and anesthesia, monitoring for adverse outcomes, and the use of discharge instructions that outline the indications, dose, and duration of analgesic to be used.141–143

Implementation

A systematic approach to pain management in emergency medical systems requires an implementation strategy advocated by leadership, which should include (1) a comprehensive evaluation of current pain management practices, (2) an educational program regarding pain assessment and management techniques for all clinical staff, (3) the development of protocols to allow the universal and efficient application of pain management strategies and medications, and (4) a quality improvement process to evaluate the ongoing success of the program.24,26

CONCLUSIONS

Health care professionals have a duty to provide compassionate care to all children. Pain and sedation management are an important yet complex aspect of emergency care for children. Multiple modalities are now available that allow pain and anxiety control for all age groups. Health care professionals should be aware of all the available analgesic options. Adequate pain assessment is essential for pain relief and should begin on entry into the emergency medical system and continue through discharge of the child from the ED. As medications and technologies
evolve, it is more important than ever that safe sedation protocols and practices are in place for children receiving emergency care.

SUMMARY OF KEY POINTS

1. Training and education in pediatric pain assessment and management should be provided to all participants in emergency medical systems for children.
2. Simple methods for creating favorable environmental conditions for pediatric patients in the EMS setting should be advocated by caregivers.
3. Incorporation of child life specialists and others trained in nonpharmacologic stress reduction should be encouraged.
4. Family presence should be offered as an option during painful procedures.
5. Pain assessment for children should begin at admission to EMS and continue until discharge from the ED. On discharge, patients should receive detailed instruction regarding analgesic administration.
6. Painless administration of analgesics and anesthetics should be practiced when possible.
7. Neonates and young infants should receive appropriate pain relief.
8. Administration of pain medication has not been shown to hinder the evaluation of a possible surgical patient in the ED, and pain medication should not be withheld on this account.
9. Sedation should be provided for patients undergoing painful or stressful procedures in the ED. A structured protocol for pediatric sedation, based on AAP, ASA, American College of Emergency Physicians, and Emergency Medical Services for Children recommendations, should be followed for all children who receive sedative medications in EMS.

Committee on Pediatric Emergency Medicine, 2003–2004

Jane F. Knapp, MD, Chairperson
Thomas Bojko, MD
Margaret A. Dolan, MD
Karen S. Frush, MD
Ronald A. Furnival, MD
Steven E. Krug, MD
Daniel J. Isaacman, MD
Robert E. Sapion, MD
Kathy N. Shaw, MD, MSCE
Paul E. Sirbaugh, DO

Liaisons

Jane Ball, RN, DrPH
EMSC National Resource Center
Kathleen Brown, MD
National Association of EMS Physicians
Dan Kavanaugh, MSW
Maternal and Child Health Bureau
Sharon E. Mace, MD
American College of Emergency Physicians
David W. Tuggle, MD
American College of Surgeons

Staff

Susan Tellez

Section on Anesthesiology and Pain Medicine, 2003–2004

Thomas J. Mancuso, MD, Chairperson
Joseph P. Craver, MD, Chairperson-elect
Rita Agarwal, MD
Constance S. Houck, MD
Zeev Kain, MD
Lynne G. Maxwell, MD
Robert D. Valley, MD, Immediate Past Chairperson
Patricia J. Davidson, MD

Liaison

Carolyn Fleming Bannister, MD
American Society of Anesthesiologists, Committee on Pediatrics

Staff

Kathleen Kuk Ozmeral

References

Cohen Reis E, Holobukov R. Vapocoolant spray is equally effective as EMLA cream in reducing immunization pain in school-aged children. Pediatrics. 1997;100(6). Available at: www.pediatrics.org/cgi/content/full/100/6/e5.

Ramsosk CA, Koziencz C, Moro-Sutherland D. The efficacy of ethyl chloride as a local anesthetic for venipuncture in an emergency room setting. Paper presented at: 39th Annual Meeting of the Ambulatory Pediatric Association; May 3, 1999; San Francisco, CA.

Ramsoosk CA, Koziencz C, Moro-Sutherland D. The efficacy of ethyl chloride as a local anesthetic for venipuncture in an emergency room setting. Paper presented at: 39th Annual Meeting of the Ambulatory Pediatric Association; May 3, 1999; San Francisco, CA.

Cohen Reis E, Holobukov R. Vapocoolant spray is equally effective as EMLA cream in reducing immunization pain in school-aged children. Pediatrics. 1997;100(6). Available at: www.pediatrics.org/cgi/content/full/100/6/e5.

Ramsosk CA, Koziencz C, Moro-Sutherland D. The efficacy of ethyl chloride as a local anesthetic for venipuncture in an emergency room setting. Paper presented at: 39th Annual Meeting of the Ambulatory Pediatric Association; May 3, 1999; San Francisco, CA.

Ramsoosk CA, Koziencz C, Moro-Sutherland D. The efficacy of ethyl chloride as a local anesthetic for venipuncture in an emergency room setting. Paper presented at: 39th Annual Meeting of the Ambulatory Pediatric Association; May 3, 1999; San Francisco, CA.

All clinical reports from the American Academy of Pediatrics automatically expire 5 years after publication unless reaffirmed, revised, or retired at or before that time.
Relief of Pain and Anxiety in Pediatric Patients in Emergency Medical Systems
William T. Zempsky, Joseph P. Cravero and Committee on Pediatric Emergency Medicine, and Section on Anesthesiology and Pain Medicine

Pediatrics 2004;114;1348
DOI: 10.1542/peds.2004-1752

Updated Information & Services
including high resolution figures, can be found at:
/content/114/5/1348.full.html

References
This article cites 128 articles, 28 of which can be accessed free at:
/content/114/5/1348.full.html#ref-list-1

Citations
This article has been cited by 16 HighWire-hosted articles:
/content/114/5/1348.full.html#related-urls

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml
Relief of Pain and Anxiety in Pediatric Patients in Emergency Medical Systems
William T. Zempsky, Joseph P. Cravero and Committee on Pediatric Emergency Medicine, and Section on Anesthesiology and Pain Medicine

Pediatrics 2004;114:1348
DOI: 10.1542/peds.2004-1752

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/114/5/1348.full.html