Clinical Report

Guidance for the Clinician in Rendering Pediatric Care

Peter L. Havens, MD, and the Committee on Pediatric AIDS

Postexposure Prophylaxis in Children and Adolescents for Nonoccupational Exposure to Human Immunodeficiency Virus

ABSTRACT. Exposure to human immunodeficiency virus (HIV) can occur in a number of situations unique to, or more common among, children and adolescents. Guidelines for postexposure prophylaxis (PEP) for occupational and nonoccupational (eg, sexual, needle-sharing) exposures to HIV have been published by the US Public Health Service, but they do not directly address nonoccupational HIV exposures unique to children (such as accidental exposure to human milk from a woman infected with HIV or a puncture wound from a discarded needle on a playground), and they do not provide antiretroviral drug information relevant to PEP in children.

This clinical report reviews issues of potential exposure of children and adolescents to HIV and gives recommendations for PEP in those situations. The risk of HIV transmission from nonoccupational, nonperinatal exposure is generally low. Transmission risk is modified by factors related to the source and extent of exposure. Determination of the HIV infection status of the exposure source may not be possible, and data on transmission risk by exposure type may not exist. Except in the setting of perinatal transmission, no studies have demonstrated the safety and efficacy of postexposure use of antiretroviral drugs for the prevention of HIV transmission in nonoccupational settings.

Antiretroviral therapy used for PEP is associated with significant toxicity. The decision to initiate prophylaxis needs to be made in consultation with the patient, the family, and a clinician with experience in treatment of persons with HIV infection. If instituted, therapy should be started as soon as possible after an exposure—no later than 72 hours—and continued for 28 days. Many clinicians would use 3 drugs for PEP regimens, although 2 drugs may be considered in certain circumstances. Instruction for avoiding secondary transmission should be given. Careful follow-up is needed for psychologic support, encouragement of medication adherence, toxicity monitoring, and serial HIV antibody testing.

INTRODUCTION

Exposure to human immunodeficiency virus (HIV) can occur in a number of situations unique to, or more common among, children and adolescents. Guidelines for prophylaxis after exposure to HIV in occupational and nonoccupational (eg, sexual, needle-sharing) settings have been published by the US Public Health Service (USPHS).¹⁻³ but they do not directly address nonoccupational HIV exposures unique to children (such as accidental exposure to human milk from a woman infected with HIV or a puncture wound from a discarded needle on a playground), and they do not provide antiretroviral drug information relevant to postexposure prophylaxis (PEP) in children.

This clinical report provides a review of the literature focused on issues of HIV exposure uniquely related to children and adolescents and gives recommendations for PEP in the following situations: injury from discarded needles, bite wounds, sexual exposure, and inadvertent exposure to human milk from an HIV-infected woman. In each setting, the risk of HIV transmission is directly related to the probability that the exposure source has HIV infection and that transmission of a sufficient amount of infectious virus occurred in a manner that could result in infection in the recipient. Because no studies have directly measured the effectiveness of PEP in decreasing the risk of HIV transmission in nonoccupational settings or after mucosal exposure, the potential benefit of PEP in modifying transmission risk is extrapolated from data regarding HIV pathogenesis in animals, from information about PEP for needlestick injuries in occupational settings, and from studies of vertical transmission of HIV.

Type of Source Material

Not all body fluids from persons with HIV infection are equally infectious (Table 1). Blood and fluids contaminated with blood from persons with HIV infection should be assumed to contain HIV and are associated with the highest risk of HIV transmission. Semen or vaginal secretions, cerebrospinal fluid, synovial fluid, pleural fluid, peritoneal fluid, pericardial fluid, amniotic fluid, human milk, and unfixed tissue from persons with HIV infection also may contain HIV and should be considered infectious.
TABLE 1. Materials That May Contain HIV From Persons With HIV Infection

<table>
<thead>
<tr>
<th>Usually Infectious Materials*</th>
<th>Usually Infectious Materials†</th>
<th>Usually Noninfectious Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrated HIV in a laboratory specimen</td>
<td>Semen</td>
<td>Saliva</td>
</tr>
<tr>
<td>Blood*</td>
<td>Vaginal secretions</td>
<td>Urine</td>
</tr>
<tr>
<td>Fluid contaminated with blood</td>
<td>Cerebrospinal fluid</td>
<td>Feces</td>
</tr>
<tr>
<td></td>
<td>Synovial fluid</td>
<td>Tears</td>
</tr>
<tr>
<td></td>
<td>Pleural fluid</td>
<td>Sweat</td>
</tr>
<tr>
<td></td>
<td>Peritoneal fluid</td>
<td>Vomitus</td>
</tr>
<tr>
<td></td>
<td>Pericardial fluid</td>
<td>Nasal secretions</td>
</tr>
<tr>
<td></td>
<td>Amniotic fluid</td>
<td>Sputum</td>
</tr>
<tr>
<td></td>
<td>Human milk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unfixed body tissue</td>
<td></td>
</tr>
</tbody>
</table>

* Most likely to be associated with a risk of HIV transmission.
† May contain HIV, but less likely to be associated with risk of HIV transmission.

However, exposure to these “other potentially infectious materials” is associated with a lower risk of HIV transmission. Blood-free saliva, urine, feces (including diarrhea), and vomitus are highly unlikely to transmit HIV.

Volume of Source Material

Exposure to a large volume of infectious material carries a greater risk of HIV transmission than does exposure to a smaller volume. For example, in studies of health care professionals with percutaneous exposure to blood from persons with HIV infection (Table 2), injuries with large-gauge, hollow-bore needles were 14 times as likely to result in HIV transmission as were injuries with smaller-gauge, hollow needles; solid suture needles; or solid objects (such as a scalpel; Table 2). Risk is also greater after exposure to a needle on which blood is visible, compared with that after exposure to a needle on which blood is not visible.

Concentration of Virus in Source Material

In addition to the volume of source material, the concentration of virus in the source material is an important factor in determining the risk of transmission after an exposure. The concentration of virus in blood is highest during early (primary) HIV infection, before the infected person has fully developed an immune response, and late in infection, when immunity wanes. Some persons with HIV infection have persistently high viral load. Percutaneous exposure to blood from a person with late-stage HIV infection increases transmission risk by more than fivefold (Table 2). For persons 15 to 24 years of age, for each act of heterosexual intercourse, risk of HIV transmission varies from 0.01% at viral loads less than 1700 copies/mL to 0.3% at viral loads more than 38 500 copies/mL. Risk of perinatal transmission is higher for mothers in late-stage HIV disease. Perinatal maternal HIV viral load is a critical factor in determining the risk of perinatal HIV transmission. Treatment with antiretroviral drugs can decrease the concentration of virus in blood and body fluids, even in persons with primary or late-stage infection. Therefore, antiretroviral treatment of the HIV-infected individual may be associated with decreased risk of sexual and perinatal HIV transmission. However, although antiretroviral therapy for an HIV-infected source patient may decrease viral load, transmission has occurred after exposure to blood or infectious body fluids from HIV-infected persons with plasma viral loads below the level of detection, perhaps from cell-associated virus. Although there is a correlation between plasma and genital viral load, HIV may be present in genital secretions even when undetectable in plasma.

Viability of Virus in Source Material

The viability of virus in the source material also is an important consideration when evaluating the significance of a potential exposure to HIV, especially in the setting of a puncture wound from a needle found in the community setting. In most reports of HIV transmission by percutaneous injury, needlestick injury occurred shortly after needle withdrawal from the vein or artery of the source patient with HIV infection. HIV RNA was detected in only 3 (3.8%) of 80 discarded disposable syringes that had been used by health care professionals for intramuscular or subcutaneous injection of patients with HIV infection, indicating that most syringes will not contain HIV even after being used to draw blood from a person with HIV infection. HIV is susceptible to drying, and when HIV is placed on a surface exposed to air, the 50% tissue culture infective dose decreases by ~6 logs in 72 hours (1 log every 9 hours). The concentration of viable virus on a discarded needle will be related to the initial virus concentration and the time that contaminated material has been drying. Such drying may not occur uniformly; if there are cells, tissue, or a blood clot inside the needle, drying and virus inactivation may be slower than for a thin uniform layer of fluid on the outside of a...
Using these estimates of cumulative risk and cumulative risk of transmission if breastfeeding for 5, change program for injection drug users. There have been no confirmed reports of HIV acquisition from percutaneous injury by a needle found in the community (M.G. Fowler, Epidemiology Branch, Division of HIV/AIDS, Centers for Disease Control and Prevention [CDC], personal communication, June 15, 2002).

Type of Contact

The type of contact between the infectious fluid and a susceptible person is an important determinant of the risk of HIV transmission (Table 3). Blood transfusion from an HIV-infected donor carries a 95% risk of HIV transmission. The risk of perinatal HIV transmission is between 13% and 45% in the absence of prophylaxis with antiretroviral medications. The risk of HIV transmission from breastfeeding is estimated to be 10% to 16%. There are no reports of transmission of HIV by human bites has been described, although such transmission seems to be extremely rare, even when saliva is contaminated with the biter’s blood, on the basis of the following observations: 41–44

- Saliva inhibits HIV infectivity.
- HIV is rarely isolated from saliva.
- Concentrations of HIV are low in the saliva of HIV-infected persons, even in the presence of periodontal disease.
- None of the approximately 500,000 cases of acquired immunodeficiency syndrome (AIDS) reported to the CDC by 1997 have been attributed to exposure to saliva.
- Transmission of HIV has not been documented in studies of nonsexual household exposure, although unconfirmed transmission has been reported.

Sharp percutaneous exposure (needlestick, scalpel) to blood infected with HIV is associated with a much lower risk of transmission than that for perinatal or blood transfusion exposure. Prospective evaluation of 6202 health care professionals after percutaneous exposure to HIV-infected blood identified seroconversion in 20 persons, with an overall risk estimate of 0.32% (95% CI, 0.20%–0.50%). Needle sharing in the context of injection drug use is estimated to have a transmission probability of 0.67% per injection (Table 3). The risk of HIV transmission from sexual exposure is highest with unprotected receptive anal intercourse (0.5%–3.2%), intermediate with receptive vaginal intercourse (0.05%–0.15%), and lowest for insertive vaginal intercourse (0.03%–0.09%; Table 3). The per-act risk of HIV transmission from oral sex is not known, although HIV rarely has been transmitted from orogenital sexual exposure. These factors may be important for younger children in the context of a single episode of sexual abuse and for adolescents who may have repeated sexual encounters that may put them at risk of HIV infection.

Transmission of HIV by human bites has been described, although such transmission seems to be extremely rare, even when saliva is contaminated with the biter’s blood, on the basis of the following observations: 41–44

Transmission of HIV by human bites has been described, although such transmission seems to be extremely rare, even when saliva is contaminated with the biter’s blood, on the basis of the following observations: 41–44

<table>
<thead>
<tr>
<th>Type of HIV Exposure</th>
<th>Risk of Transmission per Exposure Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood transfusion</td>
<td>0.95</td>
</tr>
<tr>
<td>Perinatal exposure</td>
<td>0.13 to 0.45</td>
</tr>
<tr>
<td>Needle sharing (drug use)</td>
<td>0.0067</td>
</tr>
<tr>
<td>Unprotected receptive anal intercourse</td>
<td>0.005 to 0.032</td>
</tr>
<tr>
<td>Unprotected receptive vaginal intercourse</td>
<td>0.0032</td>
</tr>
<tr>
<td>Ingestion of human milk</td>
<td>0.0003 to 0.0009</td>
</tr>
</tbody>
</table>

* See text for derivation of per-event risk calculation.
† Receptive anal intercourse and receptive vaginal intercourse refer to the risk of HIV acquisition for the person whose anus or vagina was entered by the penis of the exposure source.
‡ Insertive vaginal intercourse refers to the risk of HIV acquisition for the person whose penis was inserted into the vagina of the exposure source.
blood and nonintact skin (eczema, abrasions, etc), but infectious blood in contact with intact skin has not been reported to result in HIV transmission and is not considered an exposure with risk of transmission.1

Rationale for PEP to Prevent Transmission

During acute HIV infection, the viral doubling time is approximately 10 hours, and approximately 19 newly infected cells will develop from each HIV-infected cell.53 Therefore, within 48 hours of infection, there will be more than 1.3 x 10^6 HIV-infected cells. For HIV injected directly into blood, early administration of potent antiretroviral drugs may be particularly important for successful PEP.54 For skin and mucosal exposures, dendritic cells of skin, mucosa, and submucosa may be the first sites of virus capture and containment.55,56 Thus, rapid drug penetration to those tissues may be an important consideration in regimen efficacy. HIV is rapidly incorporated into the DNA of resting lymphocytes, where it exists in a nonduplicating state that will not be affected by antiretroviral treatment. Host genetic and immune factors may affect the susceptibility of the exposed patient to infection.

Animal Models of PEP

Animal models of PEP suggest that antiretroviral therapy initiated after virus inoculation can prevent or ameliorate infection when drugs of adequate potency are administered immediately57 or within a few hours of exposure58-60 and continued for a few days61 to weeks.62,63 PEP was most effective if begun immediately or within 24 hours64 to 36 hours65 and was less66 or not67 beneficial if begun after 72 hours. Animals developing HIV infection despite receiving PEP may have evidence of infection delayed for up to 16 weeks after virus inoculation.65 However, even potent therapy may not be able to prevent transmission if the virus inoculum is high.53,67,68

In animal models of PEP, antiretroviral drugs are most efficacious when continued for 28 days, compared with shorter durations.64 This suggests that “prophylactic” therapy is not always truly preventing transmission but rather may be modifying the course of primary infection,69,70 allowing the host to eliminate HIV early in infection. The development of a cellular immune response in HIV-exposed but ultimately uninfected animals71-73 and humans74-76 lends further support to this concept. If these regimens for prophylaxis are truly acting to abort early mucosal, submucosal, or subcutaneous infection, then antiretroviral regimens chosen for prophylaxis should be similar to those that have been shown to be effective for treatment of established HIV infection.

Prevention of Perinatal HIV Transmission as a Model of PEP

Single-drug preexposure plus postexposure antiretroviral therapy can decrease perinatal HIV transmission. In a randomized, placebo-controlled trial in 477 nonbreastfeeding women in the United States and Europe, zidovudine (ZDV [formerly called azidothymidine or AZT]) was administered to women during pregnancy and labor and to their infants for 6 weeks after birth. The rate of perinatal transmission of HIV was decreased by 67%, from 25.5% in the placebo group to 8.3% in the treatment group.77 In a placebo-controlled trial in 626 breastfeeding women in Uganda, a single dose of nevirapine given to pregnant women at labor onset followed by a single dose to the infant after birth was compared with a very short course of ZDV. At 14 to 16 weeks of age, HIV infection was present in 25.1% of the nevirapine group, compared with 13.1% of the ZDV group, a 47% decrease in the rate of perinatal HIV transmission.78

Prenatal use of combinations of antiretroviral agents may further decrease perinatal HIV transmission, compared with use of single-agent therapy. In a randomized, placebo-controlled trial in 1797 pregnant women with HIV infection in southern Africa, the rate of perinatal HIV transmission was decreased by 63%, from 15.3% in placebo-treated patients to 5.7% in women treated with the combination of ZDV plus lamivudine during pregnancy and labor and continued through 7 days after birth in women and their infants.79 In an observational cohort study of 1542 pregnant women with HIV infection in the United States who delivered infants from 1990 to 2000, the rate of perinatal HIV transmission was 20.0% for women who received no antiretroviral therapy during pregnancy, 10.4% for those who received ZDV alone, 3.8% for women treated with 2-drug combination therapy, and 1.2% for women who received combination therapy that included protease inhibitors (PIs [highly active antiretroviral therapy]) during pregnancy.80

Treating infants of HIV-infected women with ZDV exclusively, starting within 12 to 24 hours after birth and continued for 6 weeks, was associated with a decrease in the rate of perinatal HIV transmission in an observational study in New York.81,82 However, observational data from North Carolina did not confirm the effectiveness of only postexposure treatment

TABLE 4. Sexual Exposure to HIV: Factors Affecting Risk of Sexual Transmission of HIV.40

<table>
<thead>
<tr>
<th>Biologic Factor</th>
<th>Effect on Risk of HIV Transmission†</th>
<th>Effect on Risk of HIV Acquisition†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late stage of HIV infection</td>
<td>↑ ↑ ↑</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Primary HIV infection</td>
<td>↑ ↑ ↑</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Antiretroviral therapy</td>
<td>↓ ↓ ↓</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Local infection at exposure site</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Presence of cervical ectopy</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Presence of foreskin</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Condoms</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Intrauterine device</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>contraception</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Menstruation</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Genital tract trauma</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

Arrows represent risk relative to baseline values in Table 3 (the more arrows pointing upward, the higher the risk; the more arrows pointing downward, the lower the risk). * Risk of transmission: the likelihood that HIV will be passed (transmitted) from donor to recipient. † Risk of acquisition: the likelihood that recipient, once exposed, will become infected with HIV.
in preventing perinatal HIV transmission. This suggests that combined pre- and postexposure therapy may more effectively prevent perinatal HIV transmission, at least when a single agent is used.

PEP: Potential for Failure

Although postexposure ZDV treatment of HIV-exposed health care professionals was associated with an 81% lower risk of HIV transmission in an analysis of observational data (Table 2), failures have occurred. Such failures may result from large inoculum size, late institution of therapy or failure to take prescribed therapy, transmission of ZDV-resistant virus, or other as yet unidentified factors.

Although the feasibility of prophylaxis after nonoccupational exposure to HIV has been demonstrated, there are no data measuring the efficacy or effectiveness of PEP in the nonoccupational setting, although this therapy is being offered in various communities. Failures of such prophylaxis have been reported, as have apparent successes. The theoretic concern that offering PEP to sexually active persons would increase risk-taking behavior has not been identified in practice. However, the cost of prophylaxis after nonoccupational exposures is high, and adverse effects are relatively common and can rarely be fatal.

General Considerations Regarding Recommendations for Prophylaxis

In evaluating the need for PEP, the following factors should be considered: the duration of time that has passed since the potential exposure, the likelihood of HIV infection in the exposure source, the risk of transmission given the source material and type of exposure, the effectiveness of therapy at modifying that risk, the toxicity of the therapy, and the burden of adherence to antiretroviral therapy.

Because PEP is only recommended for exposures to material from persons with HIV infection, efforts should be made to learn the infection status of the exposure source. If the HIV infection status of the exposure source is unknown, HIV testing should be requested of the person who is the source of the exposure, with consent as required by local laws or regulations. Although awaiting results of testing of the exposure source, PEP may be started for the potentially exposed person and stopped if the exposure source is found not to be infected with HIV.

According to USPHS recommendations for PEP in the nonoccupational setting, PEP should not be used for persons with HIV exposures that have a low risk of HIV transmission (eg, potentially infected body fluid on intact skin) or for persons who seek care too late for the anticipated interruption of transmission (more than 72 hours after reported exposure). Clinicians considering use of PEP after a nonoccupational HIV exposure should recognize that benefits likely would be restricted to situations in which the risk of transmission is high, the intervention can be initiated promptly, and adherence to the regimen is likely. If PEP is used, physicians experienced in the management of children and adolescents with HIV infection should be consulted. Because PEP needs to be started within 72 hours of exposure, often the most feasible approach is to start PEP with a 3-day supply of medications and refer the patient to be evaluated by a consultant within 72 hours.

Recommendations for PEP in children and adolescents vary and include: 1) no PEP; 2) consider PEP; and 3) recommend PEP. Because of the absence of data documenting safety and efficacy of PEP, clinicians may make different, reasonable decisions in similar clinical circumstances. In individual cases of potential exposure, the perceived risks of HIV acquisition may be great enough to justify the burden and potential toxicity of PEP. The final decision to undertake PEP in a specific patient depends on the clinician’s recommendation and the exposed person’s and/or parent’s evaluation of the risk of transmission versus the toxicity of therapy.

If an exposure is serious enough to warrant PEP, 2-drug or 3-drug therapy can be chosen, balancing the theoretically improved efficacy of 3 drugs with the potentially lower toxicity of 2-drug regimens. The USPHS identifies the strength of their recommendations for PEP in the occupational setting by the number of drugs in the regimen. The recommendations in this clinical report separate the decision to start PEP from the decision about the number of drugs to include in the regimen. CDC guidelines suggest that determining which agents and how many agents to use is largely empiric. Complete recommendations from the CDC are available online (www.hivpepregistry.org/pdf/pedipep.pdf). American Academy of Pediatrics recommendations follow.

Prophylaxis with ZDV alone or in combination with other drugs was associated with at least 1 adverse effect in 49% of 674 health care professionals treated after occupational exposure to HIV, and 20% stopped prophylaxis prematurely because of adverse effects. Adverse effects can be severe, including potentially fatal lactic acidosis and hepatitis from mitochondrial toxicity of nucleoside analog reverse transcriptase inhibitors (NRTIs) and fatal hypersensitivity reactions from nevirapine. Concern about adverse effects may contribute to low initiation rates for PEP, and difficulty in adhering to complex drug regimens may lead to premature cessation of PEP.

HIV antibody testing of the exposed person is recommended at baseline and at 6 weeks, 12 weeks, and 6 months after exposure. Such diagnostic testing will identify most persons who develop HIV infection after an exposure, although a small fraction of infected persons may not develop detectable antibody until more than 6 months after exposure. Delay in HIV seroconversion may be more common if hepatitis C virus transmission occurs at the same time as HIV transmission.

Recommendation for Prophylaxis After Nonoccupational Exposure to HIV in Children and Adolescents

The risk of HIV transmission after an exposure varies by the type and severity of exposure (Tables
with HIV is not immediately possible, a supply of experienced in the care of children and adolescents continued for 28 days. If consultation with a clinician certainly within 72 hours, and therapy should be con-

If PEP is begun, it should be started as soon as possible after the exposure but is likely to be most effective if given sooner, preferably within a few hours after exposure. In proven cases of sexual assault by a person known or suspected to have HIV infection, PEP may be considered up to 72 hours after the exposure but is likely to be most effective if given sooner, preferably within a few hours after exposure. If the exposure source has genital ulcer disease or another sexually transmitted disease or if the exposure included tissue damage, the risk of HIV transmission is greater (Tables 3 and 4), increasing the potential benefit of PEP relative to the burden of therapy and risks of drug toxicity. Such modifying factors might strengthen the force of the recommendation in a given clinical setting.

Although PEP may be considered in many circumstances, it is only recommended for high-risk exposures to persons known to be infected with HIV (Table 8). No PEP is given if the exposure occurred more than 72 hours previously, if the exposed person refuses PEP, or if the exposed person is unwilling or unable to commit to 28 days of therapy and appropriate follow-up (Table 7).

A careful discussion of the risks and benefits of therapy guides the decision-making regarding PEP and allows appropriate postexposure care (Table 9). If PEP is begun, it should be started as soon as possible after the exposure (within hours, and definitely within 72 hours), and therapy should be continued for 28 days. If consultation with a clinician experienced in the care of children and adolescents with HIV is not immediately possible, a supply of medications sufficient to last until consultation occurs could be dispensed to the patient.

Sexual Exposure

Sexual exposure can result in HIV infection (Tables 3 and 4), and sexual abuse has resulted in HIV transmission to children. Of 9136 children with HIV infection or AIDS reported to the CDC from 1981 through 1997, 26 were sexually abused, with confirmed HIV exposure in 17 and suspected HIV exposure in 9. Of the 17 children with confirmed HIV exposure, 14 had no other risk of HIV infection, and 3 had multiple risk factors. Sexual abuse may be more likely to result in HIV transmission in girls than in women because of thin vaginal epithelium in children and cervical ectopy in adolescents and because children may be repeatedly abused by the same person over a long period. In proven cases of sexual assault by a person known or suspected to have HIV infection, PEP may be considered up to 72 hours after the exposure but is likely to be most effective if given sooner, preferably within a few hours after exposure. If the exposure source has genital ulcer disease or another sexually transmitted disease or if the exposure included tissue damage, the risk of HIV transmission is greater (Tables 3 and 4), increasing the potential benefit of PEP relative to the burden of therapy and risks of drug toxicity. Such modifying factors might strengthen the force of the recommendation in a given clinical setting.

For adolescents with a history of a single sexual exposure, PEP can be considered, and if given should be started as soon as possible after the exposure but certainly within 72 hours. Such exposure might occur from sexual abuse or by accidental exposure in a consensual relationship (eg, a broken condom). For persons with ongoing consensual sexual exposure to HIV, PEP is not indicated, and behavioral interven-

TABLE 5. Characteristics of the Exposure Source and Risk of Human Immunodeficiency Virus (HIV) Transmission

<table>
<thead>
<tr>
<th>HIV Infection Status of Exposure Source</th>
<th>Risk of HIV Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not HIV infected</td>
<td>No risk</td>
</tr>
<tr>
<td>Known not to be infected with HIV†</td>
<td>Unquantified</td>
</tr>
<tr>
<td>HIV status unknown/unknown source</td>
<td>Low</td>
</tr>
<tr>
<td>HIV infection status unknown, HIV risk status unknown</td>
<td>Intermediate</td>
</tr>
<tr>
<td>HIV status unknown: low risk</td>
<td>High</td>
</tr>
<tr>
<td>HIV infection status unknown, but known not to have risk factors†</td>
<td></td>
</tr>
<tr>
<td>HIV status unknown: high risk</td>
<td></td>
</tr>
<tr>
<td>HIV infection status unknown but known to have 1 or more risk factors‡</td>
<td></td>
</tr>
<tr>
<td>HIV infected</td>
<td></td>
</tr>
<tr>
<td>Known to be infected with HIV‡</td>
<td></td>
</tr>
</tbody>
</table>

* HIV infection is documented by presence of specific antibody to HIV in persons older than 18 months and by positive plasma HIV RNA polymerase chain reaction (PCR) assay results, positive cell-associated HIV DNA PCR assay results, or detection of plasma HIV p24 antigen in persons of any age.

† Risk factors for HIV infection include male homosexual activity, injection drug use, blood transfusion or blood product infusion before 1985, or sexual activity with a member of a high-risk group. Some persons who have sex with members of a high-risk group do not identify themselves as at risk, because they are unaware of the risk history of their sexual partner. Their risk of HIV infection is related to the prevalence of HIV infection in their immediate community.

‡ Absence of HIV infection is identified by laboratory documentation of negative HIV antibody or negative HIV DNA PCR assay results from a specimen collected close to the time of the exposure and in the absence of interval high-risk behavior or symptoms compatible with acute retroviral infection syndrome.
tions to decrease repeated exposure probably are more appropriate.110,111

Percutaneous Exposures

Risk of HIV transmission from a puncture wound from a needle found in the community is significantly lower than the 0.3\% HIV transmission risk after needlestick injury in a health care professional from a person with HIV infection. Although it is unlikely that a true estimate of risk can be established, transmission will be related to:

- The probability that the person who used the needle has HIV infection (Table 5);
- The time interval since the needle was in contact with blood of the source;
- The initial concentration of HIV on the needle, presence of blood or tissue that might delay drying (and, therefore, killing of the virus), or the presence of fresh blood or material that might contain viable virus; and
- The severity of the injury (skin contact without skin breakage, abrasion without bleeding, deeper skin penetration) in the exposed individual.

In evaluating a puncture wound, the following factors are considered in assessing potential for HIV transmission (presented as lower risk category followed by higher risk category for each attribute): the depth of the wound (superficial scratch or deep puncture); the presence of blood on the needle (no visible blood or visible blood); the characteristics of the blood on the needle (dried or fresh); the type of needle (solid or hollow bore); and the location the needle was used in the source patient’s body (not in artery or vein; or in artery or vein).

The risk of HIV transmission from a discarded needle in public places (often referred to as a “found” needle) seems to be low. Because data are not available on the efficacy of PEP in this circumstance for adults or children, the USPHS is unable to recommend for or against PEP in this circumstance.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
Exposure Type & Exposure Risk Category \\
\hline
Cutaneous exposure & No risk identified \\
Fluid on intact skin & \\
Bite without break in skin & \\
Skin with compromised integrity (eczema, chapped skin, dermatitis, abrasion, laceration, open wound) & Low to intermediate \\
Traumatic skin wound with bleeding in donor and recipient* & High \\
\hline
Mucous membrane exposure & \\
Kissing & No risk identified \\
Oral sex & Low \\
Human milk: single ingestion & \\
Splash to eye or mouth & \\
Receptive vaginal sex without trauma & Intermediate \\
Receptive anal intercourse & High \\
Traumatic sex with blood (sexual assault) & \\
\hline
Percutaneous exposure† & No risk identified \\
Superficial scratch with sharp object, including a needle found in the community & \\
Puncture wound with solid needle & Low \\
Puncture wound with hollow needle without visible blood & \\
Body piercing & \\
Puncture wound with hollow needle with visible blood & Intermediate \\
Puncture wound with large-bore hollow needle with visible blood on needle, or needle recently used in source patient artery or vein & High \\
\hline
\end{tabular}
\caption{Exposure Type and Exposure Risk Category for HIV}
\end{table}

* For example, in a fight, a blow to the mouth might break a tooth that bleeds and lacerate the first that also bleeds. If there was mixing of blood, both persons may be at risk.

† See text for considerations used in assigning the appropriate risk category for a percutaneous exposure.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
Characteristics of Exposed Patient & Suggested Approach \\
\hline
Exposure \textgreater 72 h ago; or & No PEP \\
Exposed person refuses PEP; or & \\
Exposed person unwilling or unable to commit to 28 d of therapy and appropriate follow-up. & \\
Exposure \textless=72 h ago; or & Consider PEP in appropriate exposure setting (Tables 6 and 8) \\
Exposed person voluntarily accepts PEP; or & \\
Exposed person commits to 28 d of therapy and appropriate follow-up. & \\
\hline
\end{tabular}
\caption{Suggested Approach to HIV (PEP) on the Basis of Characteristics of the Exposed Patient*}
\end{table}

* Animal data suggest PEP started later than 72 hours after exposure is less effective in preventing infection.64–66
Furthermore, PEP is not without risk and often is associated with significant adverse effects. Therefore, PEP is not routinely recommended in this situation. However, if the needle and/or syringe are found to have visible blood and the source is known to be HIV infected, some experts recommend that PEP be considered. Testing the syringe for HIV is not practical or reliable and is not recommended.

![Flowchart](image)

Fig 1. Possible exposure to HIV in children and adolescents: algorithm for decision-making for use of PEP.

<table>
<thead>
<tr>
<th>Exposure Risk Category†</th>
<th>HIV Infection Status of Source‡</th>
<th>Suggested Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>No risk identified</td>
<td>Any</td>
<td>No PEP</td>
</tr>
<tr>
<td>Any</td>
<td>Not HIV infected</td>
<td>No PEP</td>
</tr>
<tr>
<td>Low, intermediate, or high</td>
<td>Unknown</td>
<td>Consider PEP</td>
</tr>
<tr>
<td>Low or intermediate risk</td>
<td>HIV infected</td>
<td>Consider PEP</td>
</tr>
<tr>
<td>High risk</td>
<td>HIV infected</td>
<td>Recommend PEP</td>
</tr>
</tbody>
</table>

* PEP is not recommended if the exposure occurred >72 hours ago, the exposed person refuses PEP, or if the exposed person is unwilling or unable to commit to 28 days of therapy and appropriate follow-up (Table 7). When considering PEP, the approach is suggested on the basis of type and severity of exposure, fluid involved, and HIV infection status of the exposure source, as outlined in Tables 1 through 6. Characteristics of the exposed patient are also considered, as described here and in the text. Given the absence of compelling data on effectiveness of PEP, clinicians may make different, reasonable decisions in similar clinical circumstances.

† See Table 6.
‡ See Table 5.
Bite wounds are another percutaneous body fluid exposure that may occur in children, but the risk of HIV transmission after exposure to saliva is very low. In the absence of blood in saliva and blood in the bite wound, PEP is not indicated. However, if there is blood exchange from a bite, both the person bitten and the person biting should be considered at risk of transmission of HIV and considered for PEP. Use in this setting would be extremely unusual and is potentially indicated only when there is significant exposure to deep, bloody wounds in persons with HIV infection.

Adolescents may be percutaneously exposed to potentially infectious fluids by needle sharing for injection drug use (including anabolic steroids) or for body piercing. The per-contact probabilities of HIV transmission in Table 3 apply in this setting, and for a single percutaneous exposure to blood of a person at risk for or known to have HIV infection, PEP can be considered. For adolescents with ongoing needle sharing and potential exposure to HIV, PEP is not routinely recommended, and behavioral interventions to decrease repeated exposures are more appropriate than is postexposure drug therapy after a single episode.110,111

Human Milk Exposures

Because HIV can be transmitted via human milk, even a single exposure to human milk should be considered to confer a potential (albeit very low) risk of HIV transmission (Table 3). Such exposure is possible in a hospital if stored, unpasteurized human milk is given to the wrong infant or if an infant is accidentally breastfed by a woman with HIV infection who is not the child's mother. Exposure also could occur if a mother developed HIV infection while breastfeeding or if a breastfeeding mother with established HIV infection was not tested for HIV in the prenatal period. However, in most areas of the United States, the prevalence of HIV infection in pregnant women is less than 2 per 1000.112 Most breastfeeding women will have been tested for HIV during pregnancy,113,114 and women known to be HIV infected will have been counseled not to breastfeed.115 Therefore, the actual likelihood that exposure to HIV would occur by this route is extremely low.

For women with known HIV infection, the best approach to preventing transmission is to avoid breastfeeding. For a woman who continues to breastfeed, potent antiretroviral therapy for herself may decrease viral load and decrease risk of transmission, but prolonged therapy for the mother or the infant so exposed is of unknown benefit. For an infant with a single exposure to human milk from a woman with HIV infection, the magnitude of risk is estimated to be approximately 100 times lower than that for other mucous membrane exposures (Table 3), and PEP is likely not warranted (Tables 6–8).
TABLE 10. Dosage and Administration of Selected Antiretroviral Drugs That Might Be Used for Prophylaxis After Exposure to HIV in Children or Adolescents

<table>
<thead>
<tr>
<th>Drug Generic Name (Abbreviation), Trade Name</th>
<th>Recommended Dosage*</th>
<th>How Supplied</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRTIs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZDV, Retrovir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preterm infants (investigational)</td>
<td>Syrup: 10 mg/mL</td>
<td></td>
</tr>
<tr>
<td>0–2 wk of age: 1.5 mg/kg/dose, twice daily, orally (1.0 mg/kg/dose, every 12 h, IV)</td>
<td>Capsules: 100 mg</td>
<td></td>
</tr>
<tr>
<td>>2 wk of age: 2.0 mg/kg/dose, 3 times/day, orally (1.5 mg/kg/dose, every 8 h, IV)</td>
<td>Tablets: 300 mg</td>
<td></td>
</tr>
<tr>
<td>Term infants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–6 wk of age: 4 mg/kg/dose, twice daily, orally (3.0 mg/kg/dose, every 12 h, IV)</td>
<td>Combination (Combivir): ZDV, 300 mg, plus lamivudine, 150 mg, in a single tablet</td>
<td></td>
</tr>
<tr>
<td>4 wk–12 y of age: 160 mg/m²/dose, 3 times/day, orally, or 180–240 mg/m²/dose, twice daily, orally (maximum 200 mg/dose, 3 times/day or 300 mg/dose, twice daily)</td>
<td>Injection: 10 mg/mL in 20-mL vials</td>
<td></td>
</tr>
<tr>
<td>≥13 years of age: 200 mg/dose, 3 times/day, orally or 300 mg/dose, twice daily, orally</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ddI, Videx</td>
<td>Chewable tablets*: 25 mg, 50 mg, 100 mg, 150 mg (2 tablets/dose)</td>
<td></td>
</tr>
<tr>
<td><3 mo of age: 50 mg/m²/dose, twice daily, orally (investigational)</td>
<td>Coated tablets (Videx EC): 125 mg, 200 mg, 250 mg, 400 mg</td>
<td></td>
</tr>
<tr>
<td>3 mo–12 y of age: 90–135 mg/m²/dose, twice daily, orally or 240 mg/m²/dose once daily, orally (investigational)</td>
<td>Pediatric powder for oral solution mixed to final concentration of 20 mg/mL or 10 mg/mL</td>
<td></td>
</tr>
<tr>
<td>≥13 y of age:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><60 kg in body weight:</td>
<td>Oral solution: 10 mg/mL</td>
<td></td>
</tr>
<tr>
<td>Tablets, 125 mg, twice daily, orally</td>
<td>Capsules: 15, 20, 30, 40 mg. Mix with applesauce.</td>
<td></td>
</tr>
<tr>
<td>Powder, 167 mg, twice daily, orally</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥60 kg in body weight:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tablets, 200 mg, twice daily, orally or 400 mg, once daily, orally</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powder, 250 mg, twice daily, orally or 500 mg, once daily, orally</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d4T, Zerit</td>
<td></td>
<td></td>
</tr>
<tr>
<td><30 kg in body weight:</td>
<td>Table: 250 mg</td>
<td></td>
</tr>
<tr>
<td>30–60 kg: 30 mg, twice daily, orally</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>60 kg: 40 mg, twice daily, orally</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3TC, Epivir</td>
<td></td>
<td></td>
</tr>
<tr>
<td><1 mo of age: 2 mg/kg/dose, twice daily, orally</td>
<td></td>
<td></td>
</tr>
<tr>
<td><37.5 kg in body weight:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 mg/kg/dose, twice daily, orally</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥37.5 kg in body weight:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150 mg/dose, twice daily, orally</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3TIs, Amprenavir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adults: LPV, 400 mg/dose, plus RTV, 100 mg/dose, twice daily, orally</td>
<td>Capsules: 133.3 mg of LPV/33.3 mg of RTV per capsule.</td>
<td></td>
</tr>
<tr>
<td>or 533 mg/dose, plus RTV, 133 mg/dose, twice daily, orally if given with nevirapine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV indicates intravenous. ddI, didanosine; d4T, stavudine; 3TC, lamivudine; RTV, ritonavir; IDV, indinavir sulfate; NFV, nelfinavir mesylate; LPV/r, lopinavir/ritonavir.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Although the doses listed for adults are usually the Food and Drug Administration-licensed doses, the doses listed for children may be higher than the Food and Drug Administration-licensed doses. Before prescribing, see package insert for complete prescribing information, including drug toxicities, potential drug interactions, and contraindications for use.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Choice of Antiretroviral Medications for PEP

No clinical studies are available to determine the best antiretroviral regimen for PEP. The most extensive data in terms of potential efficacy and safety are for ZDV monotherapy. A clinician with experience in treatment of persons with HIV infection should be consulted before starting PEP.

Many clinicians would use the 3-drug combination of ZDV, lamivudine, and nelfinavir for PEP in children and adolescents (doses in Table 10). If the efficacy of PEP is in aborting early mucosal, submucosal, subcutaneous, or lymphatic HIV infection, then potent suppressive therapies, such as 2 NRTIs plus a PI, should be chosen, because such regimens have been shown to be more likely to suppress HIV replication than have monotherapy or dual therapy.

Taking the multiple medications required for PEP is a daunting task, and problems with drug toxicity (Table 11), patient adherence, and other factors severely limit the proportion of patients who finish PEP once they have started it. Completing 28 days of a 2-drug regimen is easier than completing...
a 3-drug regimen and may be associated with fewer medication adverse effects. Although the burden and toxicity of a 3-drug regimen may be warranted for treatment of persons with established HIV infection, the risk-benefit ratio for PEP may favor a 2-drug regimen for some patients. Therefore, some clinicians recommend 2-drug combinations of ZDV and lamivudine for PEP, hoping that the improved ease of use and potential decrease in toxicity will balance out the theoretic decrease in efficacy. It may be reasonable to consider a 2-drug regimen for treatment of some patients. The effectiveness of a drug regimen in practice will be related to the efficacy of the drugs and the probability of completion of the course of therapy.

ZDV and lamivudine are each available as syrups and are available together in a single tablet (Combivir [GlaxoSmithKline, London, United Kingdom]), enhancing ease of use for adolescents (doses in Table 10). If current and/or previous therapy used by the source patient is known and drug resistance is a concern, alternatives to the standard regimen might be considered in consultation with a specialist in HIV care in children and adolescents. Stavudine or didanosine are reasonable alternative NRTIs for use if resistance to ZDV or lamivudine is suspected. ZDV and stavudine should never be used in combination with one another because of intracellular antagonism. Because of the potential for a severe hypersensitivity reaction, the NRTI abacavir sulfate should be avoided in PEP regimens.

Nelfinavir is available as a powder for children who are unable to take pills, although some children prefer the crushed tablets to the powder. Indinavir is only available in capsule form, is associated with crystalluria and nephrolithiasis, and requires extra hydration and for these reasons is usually avoided for PEP in children and adolescents. Other PIs available in a liquid formulation appropriate for children include ritonavir, lopinavir/ritonavir (Kaletra [Abbott Laboratories, North Chicago, IL]), and amprenavir. However, gastrointestinal intolerance may be a problem with ritonavir and lopinavir/ritonavir. The liquid formulation of amprenavir has high levels of vitamin E, contains propylene glycol in a concentration that exceeds World Health Organization standards for use in infants, and should not be used in children under 4 years; therefore, it is not recommended for routine use in PEP regimens. PIs have multiple potential interactions with other drugs, and the package insert should always be consulted before prescribing any of these medications.

Nevirapine is a non-NRTI that has been shown to decrease mother-to-child transmission in a single-dose intrapartum and infant regimen. The single-dose regimen has been shown to be safe for mothers and infants. However, severe life-threatening cases of hepatotoxicity, including liver failure and death, have been reported in patients receiving nevirapine as part of a PEP regimen or as treatment of HIV infection. Therefore, nevirapine should not be used as part of a PEP regimen in children.

All antiretroviral agents have potential adverse effects (Table 11). It is critical to review the drug regimen, assess adherence, and evaluate the child for any symptoms of drug toxicity at all follow-up visits.

Implementation and Follow-up

The HIV infection status of the exposure source should be sought. If the source person is known but HIV status unknown, then HIV testing with appropriate counseling and consent should be requested. Wounds should be washed completely with soap and water. Mucous membranes should be flushed with water or saline solution. Tetanus booster and other wound care should be provided as needed (Table 9).

A discussion of risks and benefits of PEP with the family of an exposed toddler will differ from the discussion with a potentially exposed adolescent, whose family may be specifically excluded from knowledge of the whole event. Treating adolescents in this setting should follow state and local laws regarding confidentiality of medical care. Because of the need to begin prophylaxis as quickly as possible after an exposure, office or clinic staff should be instructed to act immediately on telephone calls concerning possible HIV exposure, and the clinician should not wait until the end of the clinic day to return a call. Such staff education might be incorpo-

TABLE 11. Major Toxicities of Selected Antiretroviral Drugs for Use as Prophylaxis After Exposure to HIV in Children or Adolescents

<table>
<thead>
<tr>
<th>Drug Generic Name (Abbreviation), Trade Name</th>
<th>Major Adverse Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zidovudine (ZDV), Retrovir</td>
<td>Anemia, neutropenia, nausea, headache, insomnia, muscle pain, weakness, lactic acidosis, hepatic steatosis</td>
</tr>
<tr>
<td>Didanosine (ddI), Videx</td>
<td>Pancreatitis, neuropathy, diarrhea, abdominal pain, nausea, lactic acidosis, hepatic steatosis</td>
</tr>
<tr>
<td>Stavudine (d4T), Zerit</td>
<td>Peripheral neuropathy, headache, diarrhea, nausea, insomnia, anorexia, pancreatitis, hepatitis, anemia, neutropenia, lactic acidosis, hepatic steatosis</td>
</tr>
<tr>
<td>Lamivudine (3TC), Epivir</td>
<td>Abdominal pain, nausea, diarrhea, lactic acidosis, hepatic steatosis</td>
</tr>
<tr>
<td>Ritonavir (RTV), Norvir</td>
<td>Nephrotoxicity, hyperbilirubinemia, nausea, abdominal pain, increased cholesterol and triglyceride concentrations</td>
</tr>
<tr>
<td>Indinavir sulfate (IDV), Viracept</td>
<td>Diarrhea, nausea, abdominal pain, weakness, rash, increased cholesterol and triglyceride concentrations</td>
</tr>
<tr>
<td>Nelfinavir mesylate (NFV), Viracept</td>
<td>Abdominal pain, nausea, diarrhea, circunoral paresthesias, taste alteration, increased cholesterol and triglyceride concentrations</td>
</tr>
<tr>
<td>Lopinavir/ritonavir (LPV/r), Kaletra</td>
<td>Abdominal pain, nausea, diarrhea, circunoral paresthesias, taste alteration, increased cholesterol and triglyceride concentrations</td>
</tr>
</tbody>
</table>
rated into OSHA-mandated bloodborne pathogen training.

Emergency departments should have protocols concerning possible need for postexposure HIV prophylaxis, and a “starter kit” of 3 days of antiretroviral medicines should be available at all times to ensure immediate institution of PEP therapy. Careful follow-up is crucial to ensure that the rest of the medications can be obtained easily and that consultation with a specialist in pediatric and adolescent HIV care occurs, to monitor toxicity, and to provide support for medication adherence and psychologic stress.

Initial follow-up of the exposed child is recommended within 2 to 3 days to review drug regimen, assess adherence, evaluate for any symptoms of toxicity, assess psychosocial status of the child and family, and arrange appropriate referrals if needed. To support patient adherence to medications, visits to the clinician’s office or clinic or patient-clinician telephone calls should occur at weekly intervals.

Laboratory testing for drug toxicity should be performed at baseline and 2 weeks (optional) and 4 weeks after starting therapy, and at a minimum should include complete blood cell count and alanine transaminase concentration. Persons treated with indinavir should be monitored for hematuria because of the risk of nephrolithiasis. Careful attention needs to be paid to complaints of abdominal pain, which might prompt evaluation for pancreatitis.

Monitoring for seroconversion to HIV includes testing for HIV by enzyme immunoassay, indicated at baseline and 6 weeks, 12 weeks, and 6 months after exposure. For patients coinfected with hepatitis C virus, HIV enzyme immunoassay should also be performed 12 months after the potential exposure. Testing for hepatitis B and hepatitis C should be performed as appropriate, following standard guidelines.122

In a significant exposure, the person at risk of HIV acquisition also becomes a potential source of HIV transmission to others. This needs to be discussed, and methods of preventing possible secondary transmission of HIV should be outlined, including abstinence or use of condoms for sexually active adolescents.

The potential for acquisition of HIV infection can lead to psychologic stress, which may require intensive counseling during the immediate postexposure period and until follow-up testing is negative 6 months after the exposure.

If local experts in the use of antiretroviral agents in children are unavailable for consultation, the University of California-San Francisco has a hot line (1–888-HIV-4911) that is supported by the CDC and the Health Resources and Services Administration and is staffed 24 hours a day to help clinicians through the decision pathways and to provide information on choice of therapy.

In selected instances of possible HIV exposure, legal or administrative issues may be raised, and careful documentation is important. For exposures in the hospital setting, hospital administrative policies should be consulted. For adolescents, support from family or friends might be encouraged, but the adolescent’s right to privacy should be respected.

Reporting of Exposures and Therapy

Exposures that are considered for PEP should be reported to the nonoccupational HIV PEP registry, which is run by the John Snow Institute under the auspices of the CDC. The registry can be accessed online (www.hivpepregistry.org), by telephone (1–877–HIV–1PEP), or by fax (1–877–HIV–7PEP).

SUMMARY

The risk of HIV transmission from nonoccupational, nonperinatal exposure is generally low. Transmission risk is modified by factors related to the exposure source and extent. Determination of the HIV infection status of the exposure source may not be possible, and data on transmission risk by exposure type may not exist. Except in the setting of perinatal transmission, no studies have demonstrated the safety and efficacy of postexposure use of antiretroviral drugs for the prevention of HIV transmission in the nonoccupational setting. Antiretroviral therapy used for PEP is associated with significant toxicity. The decision to initiate prophylaxis needs to be made in consultation with the patient, family, and a clinician with experience in treatment of persons with HIV infection. If instituted, therapy should be started as soon as possible after an exposure—no later than 72 hours—and continued for 28 days. Many clinicians would use 3 drugs for prophylaxis regimens, although 2 drugs may be considered in certain circumstances. Instruction for avoiding secondary transmission should be given. Careful follow-up is needed for psychologic support, encouragement of medication adherence, toxicity monitoring, and serial HIV antibody testing.

Committee on Pediatric AIDS, 2002–2003

Mark W. Kline, MD, Chairperson
Robert J. Boyle, MD
Donna C. Futterman, MD
Peter L. Havens, MD
Lisa M. Henry-Reid, MD
Susan M. King, MD
Jennifer S. Read, MD, MS, MPH
Diane W. Wara, MD

Liaisons

Mary Glenn Fowler, MD, MPH
Centers for Disease Control and Prevention
Lynne M. Mofenson, MD
National Institute of Child Health and Human Development

Consultant

Leonard Weiner, MD

Staff

Eileen Casey, MS

REFERENCES

2. Centers for Disease Control and Prevention. Updated US Public
POSTEXPOSURE PROPHYLAXIS FOR NONOCCUPATIONAL EXPOSURE TO HIV

1488

60. Van Rompuy KK, Otsyula MG, Marthas ML, Miller CJ, McChesney MB. Zidovudine prophylaxis with ZDV or ZDV combined with interferon-

74. Fournier S, Maillard A, Molina JM. Failure of postexposure prophylaxis after sexual exposure to HIV. AIDS. 2001;15:430

81. Henry K, Acosta EP, Jochimsen E. Hepatotoxicity and rash associated

105. Foster I, Bartlett JG. Rape and subsequent seroconversion to HIV [lett]. BMJ. 1989;299:1282

118. Wiebe ER, Comay SE, McGregor M, Ducciensi S. Offering HIV prophylaxis to people who have been sexually assaulted: 16 months' experience in a sexual assault service. CMAJ. 2000;162:641–645

All clinical reports from the American Academy of Pediatrics automatically expire 5 years after publication unless reaffirmed, revised, or retired at or before that time.
Postexposure Prophylaxis in Children and Adolescents for Nonoccupational Exposure to Human Immunodeficiency Virus

Peter L. Havens and Committee on Pediatric AIDS

Pediatrics 2003;111:1475

Updated Information & Services
- including high resolution figures, can be found at: /content/111/6/1475.full.html

References
- This article cites 118 articles, 22 of which can be accessed free at: /content/111/6/1475.full.html#ref-list-1

Citations
- This article has been cited by 24 HighWire-hosted articles: /content/111/6/1475.full.html#related-urls

Subspecialty Collections
- This article, along with others on similar topics, appears in the following collection(s):
 - Committee on Pediatric AIDS /cgi/collection/committee_on_pediatric_aids
 - Infectious Disease /cgi/collection/infectious_diseases_sub
 - HIV/AIDS /cgi/collection/hiv:aids_sub

Permissions & Licensing
- Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: /site/misc/Permissions.xhtml

Reprints
- Information about ordering reprints can be found online: /site/misc/reprints.xhtml
Postexposure Prophylaxis in Children and Adolescents for Nonoccupational Exposure to Human Immunodeficiency Virus
Peter L. Havens and Committee on Pediatric AIDS

Pediatrics 2003;111;1475

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/111/6/1475.full.html