Pyogenic Liver Abscess and Papillon-Lefèvre Syndrome: Not a Rare Association

Maha Almuneef, MD, FAAP, CIC*‡; Sultan Al Khenaizan, MBBS, FRCP(C)§; Sulaiman Al Ajaji, MD*; and Abdullah Al-Anazi, MBBS*

ABSTRACT. Papillon-Lefèvre syndrome is a rare, autosomal recessive disease comprising palmoplantar keratoderma and periodontitis. Pyogenic liver abscess is an increasingly recognized complication. We report a new case of this association and review the current literature. Pediatrics 2003;111:e85–e88. URL: http://www.pediatrics.org/cgi/content/full/111/1/e85; Papillon-Lefèvre syndrome, liver abscess.

ABBREVIATIONS. PLS, Papillon-Lefèvre syndrome; PPK, palmoplantar keratoderma; CT, computed tomography.

Papillon-Lefèvre syndrome (PLS) is a rare, autosomal recessive disease characterized by palmoplantar keratoderma (PPK) and juvenile periodontitis. The syndrome is believed to affect 1 to 4 persons per million. More than 200 cases have been reported.²

Pyogenic liver abscess is an uncommon surgical problem among children.³ Patients typically have an underlying disease associated with functional or quantitative neutrophil abnormalities, and 50% will be immunocompromised.⁴

Patients with PLS seem to be particularly predisposed to develop pyogenic liver abscess. The first report of this occurrence was published in 1988.⁵,⁶ We report a patient who presented with fever of unknown origin in whom pyogenic liver abscess was diagnosed. He was later proved to have PLS.

CASE REPORT

A 10-year-old Saudi boy presented with fever of 2 months duration. The fever was intermittent until 2 weeks before admission when it became persistent, high-grade, and associated with chills and night sweats. Decreased activity and poor appetite were progressing with time. The initial workup by a private physician included a complete blood count with differentials, liver function test, coagulation profile, urinalysis, and blood chemistry. All were normal. The patient received 2 courses of oral antibiotics for presumed tonsillitis without resolution of the fever. A few days before admission, the mother noted an abdominal mass associated with right upper quadrant pain. The pain, which was dull, achy, intermittent, but not radiating, was not associated with vomiting, diarrhea, or jaundice.

On physical examination, the child was well developed and well nourished. He was febrile with a temperature of 40°C, but other vital signs were normal. There was diffuse gingival redness and swelling with loss of many teeth. He had a diffuse erythematous PPK with transgrediens to the dorsae of the hands and feet (Fig 1). He also had multiple, sharply defined, scaly hyperkeratotic plaques over the elbows and knees. The liver was tender and palpable 4 cm below the right costal margin. The spleen was not palpable. Complete blood count, blood chemistry profile, and liver function tests were normal. Blood, urine, and stool cultures were all negative. Abdominal ultrasound and subsequent computed tomography (CT) of the abdomen with contrast showed a solitary liver abscess measuring 6 × 6 cm (Fig 2). Initial differential diagnosis included a pyogenic liver abscess, amebic liver abscess, and Echinococcus granulosus (hydatid cyst); however, the CT scan was not consistent with the characteristics of hydatid cyst. Serum antibody test for Entamoeba histolytica and E granulosus was negative, as well as stool for ova and parasites. Ultrasound-guided drainage was performed, and 100 mL of thick, yellowish exudate was obtained. Staphylococcus aureus, sensitive to claxacillin and vancomycin and resistant to penicillin, was isolated from the liver abscess culture. Because of the rarity of liver abscess in immunocompetent children, the loss of teeth, and the presence skin lesions, a dermatology consultation was requested, which established the diagnosis of PLS.

Immunologic studies on the patient revealed a normal neutrophil burst test, a low T-lymphocyte (CD⁴⁺ CD⁸⁻) count, and a slight elevation of natural killer cell population (CD⁷⁷⁺ [1720] 30%, CD⁴⁺ CD⁸⁻ [720] 22%, CD⁴⁻ CD⁸⁺ [1046] 32%, CD³⁺ CD⁴⁻ [390] 12%, and CD⁴⁺ [960] 29%). The patient’s medical history was significant for recurrent skin infections, and he was followed up infrequently for his skin eruption. His parents were consanguineous and divorced. Half-siblings from both parents were alive and well.

After complete drainage of the abscess, the patient was treated with claxacillin intravenously for 4 weeks, followed by oral therapy for another 2 weeks. The patient recovered dramatically and was discharged in a good condition. Kerotolytic preparations containing 20% salicylic acid were prescribed for the skin lesions, and a dental appointment was arranged.

DISCUSSION

PLS was first described by Papillon and Lefèvre in 1924. The disease is characterized by diffuse PPK and juvenile periodontitis.⁵,⁸,⁹

PPK usually arises during the first 4 years of life with sharply demarcated erythematous hyperkeratosis more pronounced on the soles and possibly extending to the dorsa of the hands and feet.¹⁰ In winter, PPK may worsen, causing painful fissures that limit ambulation.¹⁰ Erythematous hyperkeratotic plaques may also affect the elbows, knees, and trunk.¹⁰ The second major feature of PLS is severe periodontitis, which starts at age 3 or 4 years and affects the deciduous and permanent teeth.¹⁰ The teeth erupt normally but are soon lost, and by the age of 14 years, patients with PLS are usually edentulous.¹⁰ The underlying cause of the juvenile peri-
odontitis is not well understood but is now thought
to be related to an abnormal immune system and to
invading bacteria in the cementum of the teeth.11,12 A
possible role of Actinobacillus actinomycetemcomitans
has been reported.13–15

Recurrent infections are relatively common in
PLS.14 An estimated 17% of patients present with
marked predisposition to a variety of usually mild
infections like skin pyodermas.14,16 Occasionally, fa-
tal infections like multiple abdominal abscesses have
been reported.16–18 Other minor features of PLS in-
clude calcification of the dura, falx cerebri, tentorium
cerebelli, and choroids plexus.1,19

On presentation, our patient had the 2 major fea-
tures of PLS. He had severe active periodontitis and
PPK. In addition, the mother related a history of
recurrent skin infections in the patient’s first few
months of life.

Liver abscesses may be particularly common in
patients with PLS.5,8 In 1 study of 16 patients with
pyogenic liver abscess, 2 patients were found retro-
spectively to have PLS.8 To date, 4 reports of 5 pa-
tients with PLS who developed pyogenic liver ab-
scess have appeared in the English literature.5,6,8,20
Pyogenic liver abscess usually results from the seed-
ing of the liver by pathogenic bacteria through a
hematogenous route.21 The most common etiologic
agent is S aureus, and most often a solitary abscess is
found.21 Liver abscess may also result from contigu-
ous spread of infection from within the liver or from
an adjacent inflamed organ. In this setting, the infec-
tion is usually polymicrobial with Gram-negative
enterics and anaerobes forming multiple liver ab-
scesses.21 Unexplained or cryptogenic hepatic ab-
scess accounts for ~20% of cases.21 Bacteremia oc-
curs in normal and immunocompromised hosts;
however, it is usually transient and rarely seeds the liver in immunocompetent individuals.

Bacteremia during periods of extensive periodontal inflammation associated with the abnormal polymorphonuclear chemotaxis and oxygen consumption are known to occur in PLS patients. These factors likely contribute to the development of the liver abscess. In our patient, the inflamed gingiva was the likely point of entry of *S aureus* that led to bacteremia and subsequently the liver abscess. Different immunologic defects have been described in patients with PLS. A decreased peripheral T-lymphocyte subpopulation, which was noted in our patient, was described in a previous report.

Although our patient had a normal production of superoxide radicals by polymorphonuclear leukocyte (burst test), this defect has also been described in PLS patients. Impairments in chemotaxis of polymorphonuclear leukocytes, which is commonly described in PLS patients, was not tested in our patient.

A multidisciplinary approach is important for the care of patients with PLS. PPK is usually treated topically with emollients. Salicylic acid and urea can be added to enhance their effects. Systemic retinoids, including isotretinoin, etretinate, and acitretin, have proven to be effective in PPK of PLS as well as in other PPKs. There has been some concern that retinoid treatment in PLS may increase the risk of pyogenic liver abscess. This is probably unfounded, as this complication may occur in patients not receiving retinoids. In fact, among 5 patients who developed this complication, only 1 was receiving retinoid treatment. The periodontitis in PLS is usually difficult to control. Reported effective treatment for the periodontitis includes extraction of the primary teeth combined with oral antibiotics and professional teeth cleaning.

Moreover, etretinate and acitretin have been claimed to modulate the course of periodontitis and preserve the teeth. However, frequently these treatments do not succeed in preserving the permanent teeth. Prophylactic antibiotics use has not been studied, and there has been no clear indication of what to use and when. Because of the sparse number of PLS patients with pyogenic liver abscess, it is difficult to make any suggestions regarding prophylactic antibiotic use. Stronger evidence is needed to support the use of prophylactic antibiotics in these populations in the future; however, we believe that a course of antibiotics should be tried to control the active periodontitis in an effort to preserve the teeth and to prevent bacteremia and subsequently pyogenic liver abscess. The risk of pyogenic liver abscess should be kept in mind in evaluating these patients when they present with fever of unknown origin.

Recently, the gene for PLS has been mapped to 11q14-q21. In 1999, Hart et al identified a germline missense and truncating mutations in the gene encoding cathepsin C (or dipeptidyl aminopeptidase I), a lysosomal cysteine proteinase that plays an important role in intracellular degradation of proteins in families with PLS. Cathepsin C is an enzyme that processes and activates several granule serine pro-

CONCLUSION

Pyogenic liver abscess is increasingly recognized as a complication of PLS because of impairment of the immune system.

REFERENCES


Pyogenic Liver Abscess and Papillon-Lefèvre Syndrome: Not a Rare Association
Maha Almuneef, Sultan Al Khenaizan, Sulaiman Al Ajaji and Abdullah Al-Anazi

Pediatrics 2003;111;e85
DOI: 10.1542/peds.111.1.e85

Updated Information & Services
including high resolution figures, can be found at:
/content/111/1/e85.full.html

References
This article cites 35 articles, 4 of which can be accessed free at:
/content/111/1/e85.full.html#ref-list-1

Citations
This article has been cited by 5 HighWire-hosted articles:
/content/111/1/e85.full.html#related-urls

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Infectious Disease
/cgi/collection/infectious_diseases_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml
Pyogenic Liver Abscess and Papillon-Lefèvre Syndrome: Not a Rare Association
Maha Almuneef, Sultan Al Khenaizan, Sulaiman Al Ajaji and Abdullah Al-Anazi
Pediatrics 2003;111;e85
DOI: 10.1542/peds.111.1.e85

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/111/1/e85.full.html