Forty-eight (21.5%) had negative results, and 37 reacted. Peanut RASTs of those who underwent challenge were different for those who passed (median 0.69 kU/L) versus those who failed (median 2.06 kU/L) at time of challenge but not a time of diagnosis. Patients who had negative challenges were significantly more likely to have had an initial reaction with involvement of the skin alone than those with ongoing peanut allergy. Yet, 17% of those with cutaneous only reactions had RASTs >20 kU/L and therefore were ineligible for challenge. One child with a reaction involving cutaneous, respiratory, and gastrointestinal systems outgrew his allergy. Six patients with negative RASTs had positive challenges that ranged from simple cutaneous to multisystem involvement.

Conclusions. Peanut allergy is outgrown in approximately 22% of children, especially in those with histories of cutaneous only reactions and with currently low peanut RASTs. Although children with initial RASTs >10 kU/L are unlikely to lose their sensitivity, younger patients should have RASTs monitored annually until at least age 4 years. Challenges in controlled settings should be offered to appropriate patients, because the benefit provided to those who are no longer allergic clearly outweighs the risk of a carefully performed challenge.

Reviewer’s Comments. This reviewer recently peanut challenged a 4-year-old asthmatic girl with a history of persistent cow milk allergy, distant history of positive peanut puncture skin test, no known lifetime exposure to peanut, and currently negative peanut RAST, with resultant biphasic anaphylaxis. Earlier studies have shown that asthma is a major risk factor for life-threatening allergic reactions to peanut, yet any asthmatic children lost their peanut sensitivity in this study. These various observations do not suggest less aggressive avoidance measures or less diligence with adrenaline contingency plans; but closer monitoring of peanut immunoglobulin E with an eye toward ultimate challenge in qualifying children. Does avoidance of peanut at a critical time in life in sensitized children truly alter the natural history of this allergy in some? Also, it would be interesting to know if the natural history of peanut allergy is different in that smaller group of persons who begin with such sensitivity in adulthood.

JAMES R. BANKS, MD
Arnold, MD

THE NATURAL HISTORY OF PEANUT ALLERGY IN YOUNG CHILDREN AND ITS ASSOCIATION WITH SERUM PEANUT-SPECIFIC IgE

Purpose of the Study. To characterize adverse reactions after accidental peanut exposure in young children with peanut allergy and to determine the usefulness of serum peanut-specific immunoglobulin E (IgE) levels during follow-up.

Study Population. One hundred two children were identified who had clinical peanut hypersensitivity before 4 years of age. Inclusion criteria included 1) a convincing history of clinical peanut hypersensitivity and/or a positive double-blind, placebo-controlled food challenge (DBPCFC) response to peanuts and 2) a positive skin prick test response to peanuts.

Methods. Research subjects were contacted at least yearly to track adverse reactions caused by accidental exposure to peanuts. Nineteen participants discontinued their participation in the study or were lost to follow-up, leaving 83 for inclusion in the analysis. Peanut-specific serum IgE levels were determined in 51 of 83 subjects using the Pharmacia CAP system (Uppsala, Sweden).

Results. Thirty-one of 53 (58%) of the subjects followed for 5 years experienced adverse reactions from accidental peanut exposure. Regardless of the nature of their initial reaction, the majority with subsequent reactions (31/60; 52%) experienced potentially life-threatening symptoms. The group with isolated skin symptoms (11/51; 22%) had lower serum peanut-specific IgE levels (median: 1.25 kUa/L vs 11.65 kUa/L; P = .004; Wilcoxon rank sum) than the group with respiratory and/or gastrointestinal symptoms (40/51; 78%). There was no threshold level below which only skin symptoms appeared to occur. Of note, 4 subjects had negative DBPCFC results to peanuts during the follow-up period.

Conclusions. The majority of children with peanut allergy followed for up to 5 years will have adverse reactions from accidental peanut exposure. Symptoms may not be consistent with symptoms reported during initial reactions. A minority of children with peanut allergy can lose their clinical hypersensitivity.

Reviewer’s Comments. This report addresses 2 common questions asked by parents of children with peanut allergy: a) will the reactions become progressively worse? and b) will the reactions ever subside? Despite appropriate counseling on peanut avoidance, the majority of the children experienced an accidental peanut ingestion during follow-up. Moreover, initial clinical reactions involving only the skin can subsequently progress to involve the respiratory and/or gastrointestinal systems. A minority of subjects with low serum peanut-specific IgE levels developed oral tolerance to peanut. This investigation has expanded the growing body of evidence in this research area and has provided practical clinical information for addressing allergic reactions to peanuts. With the inevitability of accidental ingestions, the general trend for worsening of clinical reactions with subsequent exposures, and the inability to predict severity of future reactions, the take-home messages should be that all patients with peanut allergy need proper education about the potential seriousness of future accidental exposures and self-injectable epinephrine to manage future, severe allergic reactions.

JOHN M. JAMES, MD
Fort Collins, CO

A VOLUNTARY REGISTRY FOR PEANUT AND TREE NUT ALLERGY: CHARACTERISTICS OF THE FIRST 5149 REGISTRANTS

Purpose of the Study. To define features of peanut (PN) and tree nut (TN) allergy among 5149 members of a voluntary registry.

Study Population. Food-allergic subjects (n = 5149) were enrolled from May 1977 to May 2000, with 75% voluntarily registered through membership in the Food Allergy and Anaphylaxis Network (FAAN) and 25% recruited by physicians. Eighty-nine percent of the registrants were children <18 years of age (median age = 5 years; 67% male). Only 16 individuals were ≥65 years of age (28% male).

Methods. A structured questionnaire was distributed to 7000 lay members and 1000 health professional members of the FAAN, as well as to 4000 members of the American Academy of Allergy, Asthma, and Immunology (AAAAI). Participants or parental surrogates provided demographic information and details about allergic reactions to PNs and TNs. Data were analyzed by χ2 analysis.
The Natural History of Peanut Allergy in Young Children and Its Association with Serum Peanut-Specific IgE

John M. James

Pediatrics 2002;110:434

Updated Information & Services

including high resolution figures, can be found at:
/content/110/Supplement_2/434.2.full.html

Subspecialty Collections

This article, along with others on similar topics, appears in the following collection(s):
Allergy/Immunology
/cgi/collection/allergy:immunology_sub

Permissions & Licensing

Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints

Information about ordering reprints can be found online:
/site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2002 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.

American Academy of Pediatrics
DEDICATED TO THE HEALTH OF ALL CHILDREN™
The Natural History of Peanut Allergy in Young Children and Its Association with Serum Peanut-Specific IgE

John M. James

Pediatrics 2002;110;434

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/110/Supplement_2/434.2.full.html