A Rare Presentation of Childhood Pompe Disease: Cardiac Involvement Provoked by Epstein-Barr Virus Infection

Melle D. Talsma, MD*; Marian A. Kroos, MSc‡; Gepke Visser, MD, PhD§; Jan L.L. Kimpen, MD, PhD§; and Klary E. Niezen, PhD*

ABSTRACT. Myocarditis attributed to Epstein-Barr virus (EBV) as the sole cause is a rare manifestation. Myocarditis ascribed to EBV infection in combination with other factors has been reported in a few more cases. We report a child who experienced active EBV infection and later, at 19 months of age, received a diagnosis of Pompe disease (acid α-glucosidase deficiency) with predominant cardiac involvement. The cardiac symptoms resolved at the end of the EBV infection. When the patient was recently seen, at 8 years of age, she had an increased left ventricular wall thickness but normal cardiac function. DNA analysis identified this patient as compound heterozygote for a mutant Tyr292Cys and a null allele. In light of genotype-phenotype correlation, it is notable that a Spanish patient with a functionally similar genotype (Tyr292Cys/Arg854Stop) also had childhood Pompe disease with peripheral muscular involvement.4 Mutation detection of the gene for acid α-glucosidase deficiency with predominant cardiac involvement. When the EBV infection resolved, the heart improved dramatically and the clinical picture became that of childhood Pompe disease. This diagnosis was confirmed by measurement of acid α-glucosidase activity of acid α-glucosidase, which showed enzyme activity below detection level in both leukocytes and cultured skin fibroblasts using glycogen (respective muscle-brain fraction). A thoracic radiograph showed cardiomegaly (cardiothoracic ratio 0.6, see Table 1). The electrocardiogram showed a short P-R interval (0.065 seconds at a cardiac frequency of 100/min) and massive left ventricular hypertrophy (S in V1 28 mm and R in V6 38 mm). Echocardiography revealed an enlarged, diffused, hypertrophic left ventricle with decreased contractility (see Table 1). Systolic and diastolic left ventricular dimensions were far above the 95th percentile for normal Dutch children.

Both muscle ultrasound and electromyogram were normal. Because of progressive muscular weakness, initially thought to be attributable to polymyositis, a biopsy of the quadriceps muscle was taken. The histologic picture showed predominant lysosomal storage of glycogen, which is characteristic of Pompe disease. This diagnosis was confirmed by measurement of acid α-glucosidase, which showed enzyme activity below detection level in both leukocytes and cultured skin fibroblasts using glycogen (respectively glycogen and 4-methylumbelliferyl α-α-glucopyranoside as substrate).5

DNA analysis was performed to establish the patient’s α-glucosidase genotype. DNA analysis in leukocytes from this girl did not show any of the 3 most common mutations in the Netherlands (IVS1 [−13 G], 525 del T, and del exon 18 allele).6,7 Full-length cDNA sequence analysis by reverse transcriptase–polymerase chain reaction led to detection of a single, apparently homozygous, A to T transversion at position 875 in exon 5, resulting in amino acid substitution Tyr292Cys. However, confirmation of this mutation by polymerase chain reaction sequence analysis of genomic DNA indicated that the patient was actually heterozygous for 875A→T. The combination of both sequence data sets indicates that the seemingly normal 875A allele is not expressed at the mRNA level. Compound heterozygosity of this type is not unusual in Pompe disease.6

α-Glucosidase cDNA harboring the 875T mutation and wild-type cDNA were cloned in the eukaryotic expression vector pSHAG5 and expressed in COS cells to study the functional effect. Transfection of the wild-type cDNA to COS cells showed normal activity of acid α-glucosidase, whereas transfection of the mutated cDNA to COS cells did not. The Tyr292Cys substitution fully abolishes the catalytic activity of acid α-glucosidase for the artifi-
ciod substrate 4-methylumbelliferyl α-β-glucopyranoside, but, interesting, approximately 10% of the activity is left with glycogen as the natural substrate.

During follow-up of this patient, the peripheral muscular power diminished further. The girl became wheelchair dependent and has needed ongoing artificial ventilation since April 2001. Initially, the dimensions and the contractility of the left ventricle of the heart returned to normal, as did the cardiothoracic ratio on radiograph (see Table 1). Recent echocardiography revealed an increased ventricular wall thickness, with still normal contractility. EBV titers stayed high for 1 year but normalized later (IgM, <32; anti-capsid IgG, 256; anti-EBV early antigen, < 32; and anti-EBNA, 64).

CONCLUSION

At the age of 7 years, the patient meets all criteria for a typical presentation of childhood Pompe disease.4,5 The transient cardiomegaly is a remarkable finding. In classic infantile-onset disease, cardiomegaly presents at birth and aggravates. In late-onset disease, cardiomegaly is absent. Skeletal muscle weakness, by contrast, is a common feature of all clinical subtypes.

The acid α-glucosidase activity in leukocytes and fibroblasts of our patient was below detection level, but mutation analysis indicated that some residual activity for the natural substrate persisted. It might have been just enough to prevent cardiomegaly under normal circumstances but just too little under the challenge of an EBV infection. We realize that this theory for explaining the transient cardiomegaly builds heavily on the value of mutation analysis. The latter, however, seems justified in light of a recent report of a Spanish patient with childhood/juvenile Pompe disease.9 This Spanish patient, too, was compound heterozygote and carrier of the Tyr292Cys allele but combined with the silent Arg854Stop allele.9,10

ACKNOWLEDGMENTS

We thank A. J. J. Reiser, PhD, and M. M. P. Hermans, PhD, for valuable help in preparing the manuscript. In addition, we thank T. Bos and J. Puister for technical assistance.

REFERENCES

Left ventricular inner diameter, posterior wall thickness, and interventricular septal diameter were measured by echocardiography in the parasternal short axis view.

<table>
<thead>
<tr>
<th>Date</th>
<th>Radiographic Cardiothoracic Ratio</th>
<th>Left Ventricular Inner Diameter, Diastolic/Systolic (mm)</th>
<th>Posterior Wall Thickness, Diastolic/Systolic (mm)</th>
<th>Interventricular Septal Diameter, Diastolic/Systolic (mm)</th>
<th>Fractional Shortening</th>
<th>Body Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 1995</td>
<td>0.60</td>
<td>37/28</td>
<td>7/10</td>
<td>7.5/10</td>
<td>0.22</td>
<td>10</td>
</tr>
<tr>
<td>January 1996</td>
<td>—</td>
<td>32/26</td>
<td>7/10</td>
<td>7.3/9</td>
<td>0.20</td>
<td>12</td>
</tr>
<tr>
<td>March 1997</td>
<td>—</td>
<td>36/24</td>
<td>8/11</td>
<td>8/9.5</td>
<td>0.33</td>
<td>13</td>
</tr>
<tr>
<td>October 1998</td>
<td>0.45</td>
<td>36/23</td>
<td>8/13</td>
<td>8/11</td>
<td>0.35</td>
<td>14</td>
</tr>
<tr>
<td>May 2001</td>
<td>0.48</td>
<td>32/22</td>
<td>8/12</td>
<td>14/15</td>
<td>0.31</td>
<td>19</td>
</tr>
</tbody>
</table>

TABLE 1. Radiographic Cardiothoracic Ratio and Echocardiographic Parameters

2 of 2 EPSTEIN-BARR VIRUS AND CARDIAC INVOLVEMENT IN CHILDHOOD POMPE DISEASE

Downloaded from by guest on April 15, 2017
A Rare Presentation of Childhood Pompe Disease: Cardiac Involvement
Provoked by Epstein-Barr Virus Infection

Melle D. Talsma, Marian A. Kroos, Gepke Visser, Jan L.L. Kimpen and Klary E. Niezen

Pediatrics 2002;109;e65
DOI: 10.1542/peds.109.4.e65

Updated Information & Services
including high resolution figures, can be found at:
/content/109/4/e65.full.html

References
This article cites 9 articles, 1 of which can be accessed free at:
/content/109/4/e65.full.html#ref-list-1

Citations
This article has been cited by 2 HighWire-hosted articles:
/content/109/4/e65.full.html#related-urls

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
- **Infectious Disease**
 /cgi/collection/infectious_diseases_sub
- **Cardiology**
 /cgi/collection/cardiology_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
/site/misc/reprints.xhtml

PEDIATRICS is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. PEDIATRICS is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2002 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 0031-4005. Online ISSN: 1098-4275.
A Rare Presentation of Childhood Pompe Disease: Cardiac Involvement Provoked by Epstein-Barr Virus Infection
Melle D. Talsma, Marian A. Kroos, Gepke Visser, Jan L.L. Kimpen and Klary E. Niezen

Pediatrics 2002;109:e65
DOI: 10.1542/peds.109.4.e65

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/109/4/e65.full.html